Answer:
4 moles, 160 g
Explanation:
The formula for the calculation of moles is shown below:

For
:-
Mass of
= 196 g
Molar mass of
= 98 g/mol
The formula for the calculation of moles is shown below:

Thus,


According to the given reaction:

1 mole of sulfuric acid reacts with 2 moles of NaOH
So,
2 moles of sulfuric acid reacts with 2*2 moles of NaOH
Moles of NaOH must react = 4 moles
Molar mass of NaOH = 40 g/mol
<u>Mass = Moles*molar mass =
= 160 g</u>
Answer:
the lowest point of energy the the graph reaches
Answer: sorry I’m not sure
Odjri:
2H2(g) + O2(g) → 2H2O(1) 0 260 g 0.2068 0.180 g 2008
When 45.0 g of CH4 reacts with excess O2, the actual yield of CO2 is 118 g. What is the percent yield? CHA(g) + 2O2(g) - CO2(g) + 2H2O(g) 73.6% 67.9% 95.2% 86.4%
For the reaction: 2503(g) + 790 kcal - 25(s) + 3O2(g), how many kcal are needed to form 1.5 moles O2(g)? 790 kcal 395 kcal 2370 kcal 411 kcal
When 3 moles of Ny are mixed with 5 moles of H2 the limiting reactant is N2(g) + 3H2(g) - 2NH3(g) H2 NH3 ОООО H20 O N₂
Answer:
CH3COOH would be more concentrated
Explanation:
The higher the concentration value, the more concentrated it is.
The relationship between concentration, moles and volume is given by the equation;
Concentration = No of moles / Volume
5.0 grams of HCOOH dissolved in 189 mL of water
Number of moles = Mass / Molar mass = 5 / 46.03 = 0.1086 mol
Concentration = 0.1086 / 0.189 = 0.5746 mol/L
1.5 moles of CH3COOH dissolved in twice as much water
Volume = 2 * 189 = 378 ml = 0.378 L
Concentration = 1.5 / 0.378 = 3.9683 mol/L
Comparing both concentration values;
CH3COOH would be more concentrated