Answer:
The final mass of sample is 1.3 g.
Explanation:
Given data:
Half life of H-3 = 12.32 years
Amount left for 15.0 years = 3.02 g
Final amount = ?
Solution:
First all we will calculate the decay constant.
t₁/₂ = ln² /k
t₁/₂ =12.32 years
12.32 y = ln² /k
k = ln²/12.32 y
k = 0.05626 y⁻¹
Now we will find the original amount:
ln (A°/A) = Kt
ln (3.02 g/ A) = 0.05626 y⁻¹ × 15.0 y
ln (3.02 g/ A) = 0.8439
3.02 g/ A = e⁰°⁸⁴³⁹
3.02 g/ A = 2.33
A = 3.02 g/ 2.33
A = 1.3 g
The final mass of sample is 1.3 g.
Answer:
The correct option is;
The electronegativity increases
Explanation:
The electronegativity is the measure of an atom's ability to attract a shared electron pair. The electronegativity of an atom is dependent on the atom's atomic number and the separation distance between the electrons in the valence shell and the positively charged nucleus such that an increase in the atomic number results in an increase in electronegativity and an increase in the distance between the valence electrons and the nucleus, leads to a decrease in electronegativity.
<span>1.00 atm of each gas, in what direction will the system shift to reach equilibrium</span>
The radioactive decay of unstable isotopes continually generates new energy within Earth's crust and mantle, providing the primary source of the heat that drives mantle convection. Plate tectonics can be viewed as the surface expression of mantle convection.