Answer:
The three statements are true
Explanation:
For the reaction:
I₂O₅(s) + 5CO(g) → I₂(s) + 5CO₂(g)
State oxidation of iodine in I₂O₅ is:
5 O²⁻ = 10⁻
As you have 2 I and the molecule has no charge, <em>oxidation state of I is +5</em>.
The carbon in CO has an oxidation state of +2 and in CO₂ is +4. That means <em>the carbon is oxidized</em>
<em />
An oxidizing agent is a substance that produce the oxidation of the agent that reacts with this one. CO is oxidized because of I₂O₅ is producing its oxidation being <em>the oxidizing agent</em>
<em></em>
Thus,<em> the three statements are true</em>.
This description applies and is suitable for what a chemical precipitate is. A precipitate is a product that is formed from a certain chemicals reaction that yields a solid that is insoluble in the reaction vessel. It is usually white and opaque.
A. Thermal energy good job
Volume fraction = volume of the element / volume of the alloy
Volume = density * mass
Base: 100 grams of alloy
mass of tin = 15 grams
mass of lead = 85 grams
volume = mass / density
Volume of tin = 15g / 7.29 g/cm^3 = 2.06 cm^3
Volume of lead = 85 g / 11.27 g/cm^3 = 7.54 cm^3
Volume fraction of tin = 2.06 cm^3 / (2.06 cm^3 + 7.54 cm^3) = 0.215
Volume fraction of lead = 7.54 cm^3 / (2.06 cm^3 + 7.54 cm^3) = 0.785
As you can verify the sum of the two volume fractions equals 1: 0.215 + 0.785 = 1.000
The arrangement of the solutions based on their absorption from highest frequency to lowest frequency :
b.
> c.
> a.NaCl
<h3>What is absorption frequency?</h3>
- The frequency of the molecular vibration that led to the absorption is the same as the absorption frequency of a basic IR absorption band.
- In a way, an emission spectrum is the opposite of an absorption spectrum.
- The discrepancies in the energy levels of each chemical element's orbitals correspond to absorption lines for each chemical element at various particular wavelengths.
- Therefore, it is possible to identify the constituents in a gas or liquid using its absorption spectrum.
- Absorption spectroscopy is most frequently used to measure infrared, atomic, visible, ultraviolet (UV), and x-ray waves.
Learn more about Absorption frequency here:
brainly.com/question/5032775
#SPJ4