The correct matches are as follows:
1. Big Bang theory: Theory that suggests the origin of the universe started with an explosion and expansion of a very hot, dense, compact fireball.
2. Steady state theory: Theory about the origin of the universe that suggest that the universe has and will continue to be at a steady continuous state.
3. Oscillatory universe theory: Theory about the origin of the universe that suggests the universe is a never ending cycle of expansion and contraction.
4. Nebular theory: Theory about the origin of the solar system that suggest our sun and planet formed from a cloud of dust and gas.
5. Inflation theory: Theory that upholds the big bang theory but suggest there was an extremely rapid expansion or inflation milliseconds after the big bang.
6. Condensation theory: Theory about the origin of the solar system that agree with the nebular theory but stresses the importance of interstellar dust in planet formation.
Learning Objective
Define the law of conservation of mass
Key Points
The law of conservation of mass states that mass in an isolated system is neither created nor destroyed by chemical reactions or physical transformations.
According to the law of conservation of mass, the mass of the products in a chemical reaction must equal the mass of the reactants.
The law of conservation of mass is useful for a number of calculations and can be used to solve for unknown masses, such the amount of gas consumed or produced during a reaction.
Terms
reactantAny of the participants present at the start of a chemical reaction. Also, a molecule before it undergoes a chemical change.
law of conservation of massA law that states that mass cannot be created or destroyed; it is merely rearranged.
productA chemical substance formed as a result of a chemical reaction.
History of the Law of the Conservation of Mass
The ancient Greeks first proposed the idea that the total amount of matter in the universe is constant. However, Antoine Lavoisier described the law of conservation of mass (or the principle of mass/matter conservation) as a fundamental principle of physics in 1789.
Antoine LavoisierA portrait of Antoine Lavoisier, the scientist credited with the discovery of the law of conservation of mass.
This law states that, despite chemical reactions or physical transformations, mass is conserved — that is, it cannot be created or destroyed — within an isolated system. In other words, in a chemical reaction, the mass of the products will always be equal to the mass of the reactants.
The Law of Conservation of Mass-Energy
This law was later amended by Einstein in the law of conservation of mass-energy, which describes the fact that the total mass and energy in a system remain constant. This amendment incorporates the fact that mass and energy can be converted from one to another. However, the law of conservation of mass remains a useful concept in chemistry, since the energy produced or consumed in a typical chemical reaction accounts for a minute amount of mass.
We can therefore visualize chemical reactions as the rearrangement of atoms and bonds, while the number of atoms involved in a reaction remains unchanged. This assumption allows us to represent a chemical reaction as a balanced equation, in which the number of moles of any element involved is the same on both sides of the equation. An additional useful application of this law is the determination of the masses of gaseous reactants and products. If the sums of the solid or liquid reactants and products are known, any remaining mass can be assigned to gas.
Ethylene, also named ethene.
Explanation:
<em>Is this the answer you're looking for?</em>
Answer:

Explanation:
Hello there!
In this case, according to the given information, it will be possible for us to use the Dalton's law, in order to solve this problem. However, we first need to calculate the mole fraction of oxygen by firstly calculating the moles of each gas:

Next, we calculate such mole fraction as follows:

Then, given the following equation:

So we solve for the total pressure as follows:

Regards!
Answer:
electrons are negatively charged and are located in the electron cloud (outside the nucleus)