Answer:
Yes it is a solid
Explanation:
It just has unusual properties.
Does it float when you drop it? then it is not a gas.
Does it pour into any container as water does? Then it is not a liquid.
So it's a solid.
And it can change it's shape
The following statements apply:
1. Resolution of low boiling solutes is maintained.
2. Retention times of high boiling solutes are decreased.
Temperature programming refers to the process of increasing the temperature of gas chromatography column as a function of time. Temperature programming is usually applied to samples which contain a mixture of components whose boiling points are within narrow ranges
Answer:
<h2>0.39m/s^2</h2>
Explanation:
Step one:
given data
mass m= 300kg
applied force F= 1000N
coefficient of friction μ= 0.3
Step two:
The net force Fn= applied force-friction force
Fn=F-F1
F1= limiting force
F1=μ*m*g
F1=0.3*300*9.81
F1=882.9N
the Net force= 1000-882.9
Fn=117.1N
Step three:
we know that
F=ma
Fnet=ma
a= Fnet/m
a=117.1/300
a=0.39m/s^2
Answer:
the answer is d
Explanation:
the more mass there is, the larger the gravitational pull is.
Answer:

Explanation:
The frequency of a simple pendulum is given by:

where
g is the acceleration of gravity
L is the length of the pendulum
Calling
the length of the first pendulum and
the acceleration of gravity at the location of the first pendulum, the frequency of the first pendulum is

The length of the second pendulum is 0.4 times the length of the first pendulum, so

while the acceleration of gravity experienced by the second pendulum is 0.9 times the acceleration of gravity experienced by the first pendulum, so

So the frequency of the second pendulum is

Therefore the ratio between the two frequencies is
