You don't need to do any calculations, you are already given that n=1.5
n is index of refraction. it's 1.5
Answer:
630.75 j
Explanation:
from the question we have the following
total mass (m) = 54.5 kg
initial speed (Vi) = 1.4 m/s
final speed (Vf) = 6.6 m/s
frictional force (FF) = 41 N
height of slope (h) = 2.1 m
length of slope (d) = 12.4 m
acceleration due to gravity (g) = 9.8 m/s^2
work done (wd) = ?
- we can calculate the work done by the boy in pushing the chair using the law of law of conservation of energy
wd + mgh = (0.5 mVf^2) - (0.5 mVi^2) + (FF x d)
wd = (0.5 mVf^2) - (0.5 mVi^2) + (FF x d) - (mgh)
where wd = work done
m = mass
h = height
g = acceleration due to gravity
FF = frictional force
d = distance
Vf and Vi = final and initial velocity
wd = (0.5 x 54.5 x 6.9^2) - (0.5 x 54.5 x 1.4^2) + (41 x 12.4) - (54.5 X 9.8 X 2.1)
wd = 630.75 j
Answer:
B is the answer a force is a push or pull
Answer:
Wavelength = 3.74 m
Explanation:
In order to find wavelength in "metres", we must first convert megahertz to hertz.
1 MHz = 1 × 10⁶ Hz
80.3 Mhz = <em>x</em>
<em>x </em>= 80.3 × 1 × 10⁶ = 8.03 × 10⁷ Hz
The formula between wave speed, frequency and wavelength is:
v = fλ [where v is wave speed, f is frequency and λ is wavelength]
Reorganise the equation and make λ the subject.
λ = v ÷ f
λ = (3 × 10⁸) ÷ (8.03 × 10⁷)
λ = 3.74 m [rounded to 3 significant figures]