Percent Composition by Mass. Percent composition is calculated from a molecular formula by dividing the mass of a single element in one mole of a compound by the mass of one mole of the entire compound. This value is presented as a percentage.
The best answer. :)
Answer:
All right. So let's calculate the density of a glass marble. Remember that the formula for density is mass over volume. So if I know that the masses 18.5 g. And I know that the um volume is 6.45 cubic centimeters. I can go ahead and answer this to three significant figures. So it's going to be 2.87 grams per cubic centimeter. Okay, that's our density. Now, density is an intensive process. Okay. We're an intensive property. I really should say. It doesn't depend on how much you have. Mhm. If I have one marble, its density is going to be 2.87 g per cubic centimeter. If I have two marbles, the density will be the same because I'll double the mass and I'll also double the volume. So when I divide them I'll get the same number. Okay, that's what makes it an intensive property. No matter how many marbles I have, they'll have the same density. Mass though is not an intensive property. So if I have six marbles and I want to know what the massive six marbles is. Well, I know the mass of each marble is 18.5 g. So the mass of six marbles Is going to be 100 11 g. Because mass is an extensive property. It depends on how much you have. If I change the number of marbles, I'm going to change the mass. That's an extensive property. All right. So we've calculated the density. We've calculated the mass and then what happens to the density of one marble compared to six marbles as we mentioned before. Since densities and intensive property, the densities will be the same, no matter how may.
Explanation:
Answer:
It will decrease by 2 units.
Explanation:
The Henderson-Hasselbalch equation for a buffer is
pH = pKa + log(base/acid)
Let's assume your acid has pKa = 5.
(a) If the base: acid ratio is 1:1,
pH(1) = 5 + log(1/1) = 5 + log(1) = 5 + 0 = 5
(b) If the base: acid ratio is 1:100,
pH(2) = 5 + log(1/100) = 5 + log(0.01) = 5 - 2 = 3
(c) Difference
ΔpH = pH(2) - pH(1) = 5 - 3 = -2
If you increase the acid:base ratio to 100:1, the pH will decrease by two units.
the ion version of potassium is k+
10 decigrams are equivalent to 1 gram, so 2,100 grams are equivalent to 2100 x 10. This makes 21,000.