Answer:
i belive A, i cold be wrong tho, pls tell me if im right if you fully find out
ght. Explanation:
Explanation:
water evaporates because when h2o (water) particles heat up, they gain energy causing them to start to vibrate. this moves the oarticles further and further away from eachother and making the substance less dense, and turning it into a gas. meaning it has evaporated
Answer:
B. decay of dead marine organisms
Explanation:
When the temperature is low, carbon dioxide is captured by the oceans, and when the temperature is high, it is released by the oceans into the atmosphere. At sea, carbon dioxide feeds phytoplankton.
Most of the carbon dioxide consumed by plant plankton (phytoplankton) returns to the atmosphere when this phytoplankton dies or is consumed, but a portion is deposited in the ocean floor sediments when these small particles sink. This process is called a "biological bomb" because carbon dioxide is transported from the atmosphere to the ocean floor.
The cell proliferates to produce many cells that result in multicellar organism.
answer
Answer:
C) SN2 and E2
Explanation:
For this question, we have analyzed the <u>substrate</u> and the <u>base/nucleophile</u>. The substrate, in this case, is 1-iodohexane and the base/nucleophile is potassium tert-butoxide.
<u>Substrate</u>
<u />
In the 1-iodohexane the iodide "I" is bonded to a primary carbon (carbon 1). Therefore we will have a <u>primary substrate</u>. If we have a primary substrate an Sn1 can not take place. We can not have a <u>primary carbocation</u> due to this instability. So, we can disccard options A) and B).
<u>Base/nucleophile</u>
<u />
In the potassium tert-butoxide we have an ionic compound. A positive charge is placed in the potassium atom a negative charge is placed in the oxygen of the ter-butoxide ion. So, we will have a <u>strong base</u> (a molecule with the ability to remove electrons) and a <u>strong nucleophile</u> (a molecule with ability to bond with an electrophile). With all this in mind, w<u>e can not have an E1 reaction</u>.
With both analyses, the answer is C).
See figure 1
I hope it helps!