Note: Above question is incomplete: Complete question is read as
<span>According the the arrhenius theory, which species does an acid produce in an aqueous solution?
</span>A) hydrogen ions B) hydroxyl ions C) Sodium ions D) Chloride ion
.....................................................................................................................
Correct answer for above question is A) Hydrogen ions
Reason:
According the Arrhenius theory of acid and base, acid generates hydrogen ions in aqueous medium, while bases generates hydroxyl ions in aqueous medium.
Example of Acid:
HCl(aq) → H+(aq) + Cl-(aq)
Example of Base:
NaOH(aq) → Na+(aq) + OH-(aq)
Osmosis and diffusion are related processes that display similarities. Both osmosis and diffusion equalize the concentration of two solutions. Both diffusion and osmosis are passive transport processes, which means they do not require any input of extra energy to occur. In both diffusion and osmosis, particles move from an area of higher concentration to one of lower concentration. Osmosis and facilitated diffusion both account for movement of molecules from a region of high concentration to a region of low concentration.
The answer is 615.91 grams of <span>n2f4
Solution:
225g F2 x [(1molF2)/(38gramsF2)] x [</span>(1molF2)/(1molN2F4)] x [(104.02 grams N2F4)/(1molN2F4)]
=615.91 grams
Answer:
Carbon dioxide and hydrogen monoxide
<u>Answer:</u> The
for the reaction is -1835 kJ.
<u>Explanation:</u>
Hess’s law of constant heat summation states that the amount of heat absorbed or evolved in a given chemical equation remains the same whether the process occurs in one step or several steps.
According to this law, the chemical equation is treated as ordinary algebraic expressions and can be added or subtracted to yield the required equation. This means that the enthalpy change of the overall reaction is equal to the sum of the enthalpy changes of the intermediate reactions.
The given chemical reaction follows:

The intermediate balanced chemical reaction are:
(1)
( × 4)
(2)

The expression for enthalpy of the reaction follows:
![\Delta H^o_{rxn}=[4\times (-\Delta H_1)]+[1\times \Delta H_2]](https://tex.z-dn.net/?f=%5CDelta%20H%5Eo_%7Brxn%7D%3D%5B4%5Ctimes%20%28-%5CDelta%20H_1%29%5D%2B%5B1%5Ctimes%20%5CDelta%20H_2%5D)
Putting values in above equation, we get:

Hence, the
for the reaction is -1835 kJ.