Answer:
k = 12
Step-by-step explanation:
Given:
The equation 
To find:
Value of
for which the given equation has one distinct real solution.
Solution:
The given equation is a quadratic equation.
There are always two solutions of a quadratic equation.
For the equation:
to have one distinct solution:

Here,
a = 2,
b = -k and
c = 18
Putting the values, we get:

The equation becomes:

And the one root is:

Answer:
1/2
Step-by-step explanation:
The x-intercept is a point on the graph that is located on any point of x but must have a y-value of 0. To find the x-intercept, we must set y in the given equation equal to 0.
8x + 2y = 4
8x + 2(0) = 4
8x = 4
x = 4/8
x = 1/2
The equation of the parabolas given will be found as follows:
a] general form of the parabolas is:
y=k(ax^2+bx+c)
taking to points form the first graph say (2,-2) (3,2), thus
y=k(x-2)(x-3)
y=k(x^2-5x+6)
taking another point (-1,5)
5=k((-1)^2-5(-1)+6)
5=k(1+5+6)
5=12k
k=5/12
thus the equation will be:
y=5/12(x^2-5x+6)
b] Using the vertex form of the quadratic equations:
y=a(x-h)^2+k
where (h,k) is the vertex
from the graph, the vertex is hence: (-2,1)
thus the equation will be:
y=a(x+2)^2+1
taking the point say (0,3) and solving for a
3=a(0+2)^2+1
3=4a+1
a=1/2
hence the equation will be:
y=1/2(x+2)^2+1
Step-by-step explanation:
a. x = 30° (180-70-80)
b. <FGA = 80°
c. vertical angles