Water is always on the move. Rain falling today may have been water in a distant ocean days before. And the water you see in a river or stream may have been snow on a high mountaintop. Water is in the atmosphere, on the land, in the ocean, and underground. It moves from place to place through the water cycle.
Where's the water?
There are about 1.4 billion km3 of water (336 million mi3 of water) on Earth. That includes liquid water in the ocean, lakes, and rivers. It includes frozen water in snow, ice, and glaciers, and water that’s underground in soils and rocks. It includes the water that’s in the atmosphere as clouds and vapor.
If you could put all that water together – like a gigantic water drop – it would be 1,500 kilometers (930 miles) across.
Answer:
I'm hoping this helps!! it's on quizzes if you're wondering
Answer:
19.264×
atoms are present in 3.2 moles of carbon.
Explanation:
It is known that one mole of each element is composed of Avagadro's number of atoms. This is same for all the elements in the periodic table.
So, as 1 mole of any element = Avagadro's number of atoms = 6.02×
atoms
It is as simple as understanding a dozen of anything is equal to 12 pieces of that object.
As here the moles of carbon is given as 3.20 moles, the number of atoms in this mole can be determined as below.
1 mole of carbon = 6.02 ×
atoms
Then, 3.20 moles of carbon = 3.20 × 6.02 ×
atoms
Thus, 19.264×
atoms are present in 3.2 moles of carbon.
Answer: 1709.4 Joules
Explanation:
The quantity of Heat Energy (Q) released on cooling a heated substance depends on its Mass (M), specific heat capacity (C) and change in temperature (Φ)
Thus, Q = MCΦ
Since Q = ?
M = 18.5 grams
Recall that the specific heat capacity of copper C = 0.385 J/g.C
Φ = 285°C - 45°C = 240°C
Then, Q = MCΦ
Q = 18.5grams x 0.385 J/g.C x 240°C
Q = 1709.4 Joules
Thus, 1709.4 Joules is released when copper is cooled.