Answer : The mass of water produced will be 32.78 grams.
Explanation : Given,
Mass of
= 21.9 g
Molar mass of
= 72.15 g/mole
Molar mass of
= 18 g/mole
First we have to calculate the moles of
.

Now we have to calculate the moles of
.
The balanced chemical reaction will be,

From the balanced reaction we conclude that
As, 1 mole of
react to give 6 moles of 
So, 0.3035 moles of
react to give
moles of 
Now we have to calculate the mass of
.


Therefore, the mass of water produced will be 32.78 grams.
C3H8+3O2--->3CO2+8H
Therefore for every 1:3 there are 3 Carbon dioxides that form. That means find the limiting reactant from the two reactants.
5.5g(1mole C3H8/44.03g of C3H8)=0.1249 moled of C3H8 and if for every one C3H8 we can form three CO2. We can assume 0.3747 miles of CO2 will be produced.
15g of O2(1 mole O2/32g of O2)=0.4685moles O2 and if for every three O2 we can produce three CO2 we may assume a 1:1 ratio.
This means C3H8 will be your limiting reactant. Therefore 0.3747 moles of CO2 will be produced.
0.3747 moles of CO2(48.01 g of CO2/1 mole of CO2)= 17.99 grams of CO2
Answer:
1) SO₄
²⁻ : (+6)
H₂S : (-2)
Explanation:
a) <u>Sulfate reducers</u> are widespread in muds and other sediments, water-logged soils, etc., environments that contain SO₄ ²⁻ and become anoxic as a result of microbial decomposition.
Sulfate (SO₄ ²⁻), the most oxidized form of sulfur (+6), <u>is reduced</u> by these
sulfate-reducing bacteria. The end product of sulfate reduction is hydrogen sulfide, H₂S, (oxidation number -2) an important natural product that participates in many biogeochemical processes. The H₂S they generate is responsible for the pungent smell (like that of rotten eggs) often encountered near coastal ecosystems. When sulfate-reducing bacteria grow, the H₂S formed from SO₄ ²⁻ reduction combines with the ferrous iron to form black, insoluble ferrous sulfide, which is not toxic. This is important for the conservation of the environment.
b) The net ionic equation under acidic conditions is:
4 H₂ + SO₄²⁻ + H⁺ → HS⁻ + 4 H₂O
Global reaction: SO₄²⁻ + 2H⁺ → H₂S + O₂
C- more than one light year or B-exactly one light year
<u>Answer:</u> The mass of ice is 
<u>Explanation:</u>
We are given:
Area of Antarctica =
(Conversion factor:
)
Height of Antarctica with ice = 7500 ft.
Height of Antarctica without ice = 1500 ft.
Height of ice = 7500 - 1500 = 6000 ft =
(Conversion factor: 1 ft = 30.48 cm)
To calculate mass of ice, we use the equation:

We are given:
Density of ice = 
Volume of ice = Area × Height of ice = 
Putting values in above equation, we get:

Hence, the mass of ice is 