<h3><u>Answer;</u></h3>
<em><u> = 48,828.125 mi/hr²</u></em>
<h3><u>Explanation and solution</u>;</h3>
- <em><u>Centripetal acceleration is the rate of change of angular velocity. Centripetal acceleration occurs towards the center of the circular path along the radius of the circular path</u></em>.
- Centripetal acceleration is given by; <em>V²/r ; </em>
<em>V = 125 mi/h and r = 0.320 miles </em>
- <em>Thus; centripetal acceleration = 125²/0.320 </em>
=15625/0.320
<em><u> = 48,828.125 mi/hr²</u></em>
Answer : The rate constant at 785.0 K is, 
Explanation :
According to the Arrhenius equation,

or,
![\log (\frac{K_2}{K_1})=\frac{Ea}{2.303\times R}[\frac{1}{T_1}-\frac{1}{T_2}]](https://tex.z-dn.net/?f=%5Clog%20%28%5Cfrac%7BK_2%7D%7BK_1%7D%29%3D%5Cfrac%7BEa%7D%7B2.303%5Ctimes%20R%7D%5B%5Cfrac%7B1%7D%7BT_1%7D-%5Cfrac%7B1%7D%7BT_2%7D%5D)
where,
= rate constant at
= 
= rate constant at
= ?
= activation energy for the reaction = 262 kJ/mole = 262000 J/mole
R = gas constant = 8.314 J/mole.K
= initial temperature = 
= final temperature = 
Now put all the given values in this formula, we get:
![\log (\frac{K_2}{6.1\times 10^{-8}s^{-1}})=\frac{262000J/mole}{2.303\times 8.314J/mole.K}[\frac{1}{600.0K}-\frac{1}{785.0K}]](https://tex.z-dn.net/?f=%5Clog%20%28%5Cfrac%7BK_2%7D%7B6.1%5Ctimes%2010%5E%7B-8%7Ds%5E%7B-1%7D%7D%29%3D%5Cfrac%7B262000J%2Fmole%7D%7B2.303%5Ctimes%208.314J%2Fmole.K%7D%5B%5Cfrac%7B1%7D%7B600.0K%7D-%5Cfrac%7B1%7D%7B785.0K%7D%5D)

Therefore, the rate constant at 785.0 K is, 
Answer:
in this situation I would a little bold
Explanation:
first I don't know what extinguisher I would use pretty much any that helps with fires. I'll back people up, take the hood and put it on the small fire that way it will light out more and if I open the hood and there still a little fire I would use the extinguisher and no one gets hurt :)
Explanation:
The scientific notation:

where
and k is integer.
We have the example:

You can write the numbers in a "normal" form:

Make the sum:

And next write it in the scientific notation:

<h3>Other method:</h3>
You can add numbers in scientific notation if the power of tens in both number is the same.
Therefore you must convert the first number:

Now, you can make the sum:
