Answer is: adding NaCl will lower the freezing point of a solution.
A solution (in this example solution of sodium chloride) freezes at a lower temperature than does the pure solvent (deionized water).
The higher the solute concentration (sodium chloride), freezing point depression of the solution will be greater.
Equation describing the change in freezing point:
ΔT = Kf · b · i.
ΔT - temperature change from pure solvent to solution.
Kf - the molal freezing point depression constant.
b - molality (moles of solute per kilogram of solvent).
i - Van’t Hoff Factor.
Dissociation of sodium chloride in water: NaCl(aq) → Na⁺(aq) + Cl⁻(aq).
What are you trying to ask
Answer:
vHe / vNe = 2.24
Explanation:
To obtain the velocity of an ideal gas you must use the formula:
v = √3RT / √M
Where R is gas constant (8.314 kgm²/s²molK); T is temperature and M is molar mass of the gas (4x10⁻³kg/mol for helium and 20,18x10⁻³ kg/mol for neon). Thus:
vHe = √3×8.314 kgm²/s²molK×T / √4x10⁻³kg/mol
vNe = √3×8.314 kgm²/s²molK×T / √20.18x10⁻³kg/mol
The ratio is:
vHe / vNe = √3×8.314 kgm²/s²molK×T / √4x10⁻³kg/mol / √3×8.314 kgm²/s²molK×T / √20.18x10⁻³kg/mol
vHe / vNe = √20.18x10⁻³kg/mol / √4x10⁻³kg/mol
<em>vHe / vNe = 2.24</em>
<em />
I hope it helps!
Answer:
is the symbol for an oxide ion
Is it kinetic or potential energy Or frequency and wavelength