Answer:
How many grams of potassium chloride, KCl, must be dissolved in 500.0 mL of solution to produce a 1.5 M solution? Answer: g 4. What is the molarity of a solution in which 84.0 grams of sodium chloride, NaCl, is dissolved in 1.25 liters of solution? Answer: M 5.
Explanation:
I’m not too sure I hope someone answers for you
Answer:
The answer to your question is: 6.8 g of water
Explanation:
Data
2.6 moles of HCl
1.4 moles of Ca(OH)2
2HCl + Ca(OH)2 → 2H2O + CaCl2
MW 2(36.5) 74 36 g 111 g
73g
1 mol of HCl ---------------- 36.5 g
2.6 mol -------------- x
x = (2.6 x 36.5) / 1 = 94.9 g
1 mol of Ca(OH)2 -------------- 74 g
1.4 mol --------------- x
x = (1.4 x 74) / 1 = 103.6 g
Grams of water
73 g of HCl ------------------ 36g of H2O
94.9 g ------------------- x
x = (94.9 x 36) / 73 = 46.8 g of water
<span>Not to be confused with tetration.
This article is about volumetric titration. For other uses, see Titration (disambiguation).
Acid–base titration is a quantitative analysis of concentration of an unknown acid or base solution.
Titration, also known as titrimetry,[1] is a common laboratory method of quantitative chemical analysis that is used to determine the unknown concentration of an identified analyte. Since volume measurements play a key role in titration, it is also known as volumetric analysis. A reagent, called the titrant or titrator[2] is prepared as a standard solution. A known concentration and volume of titrant reacts with a solution of analyte or titrand[3] to determine concentration. The volume of titrant reacted is called titration volume</span>
Cheeze is the most one i hope it helps