Answer:
See the answers below.
Explanation:
to solve this problem we must make a free body diagram, with the forces acting on the metal rod.
i)
The center of gravity of the rod is concentrated in half the distance, that is, from the end of the bar to the center there is 40 [cm]. This can be seen in the attached free body diagram.
We have only two equilibrium equations, a summation of forces on the Y-axis equal to zero, and a summation of moments on any point equal to zero.
For the summation of forces we will take the forces upwards as positive and the negative forces downwards.
ΣF = 0

Now we perform a sum of moments equal to zero around the point of attachment of the string with the metal bar. Let's take as a positive the moment of the force that rotates the metal bar counterclockwise.
ii) In the free body diagram we can see that the force acts at 18 [cm] of the string.
ΣM = 0
![(15*9) - (18*W) = 0\\135 = 18*W\\W = 7.5 [N]](https://tex.z-dn.net/?f=%2815%2A9%29%20-%20%2818%2AW%29%20%3D%200%5C%5C135%20%3D%2018%2AW%5C%5CW%20%3D%207.5%20%5BN%5D)
I think what’s wrong is that the paper clip isn’t connecting to the other thing on the bottom
Answer:
A spring whose spring constant is 200 lbf/in has an initial force of 100 lbf acting on it. Determine the work, in Btu, required to compress it another 1 inch.
Step 1 of 4
The force at any point during the deflection of the spring is given by,
where is the initial force
and x is the deflection as measured from the point where the initial force occurred.
The work required to compress the spring is
Therefore work required to compress the spring is
The work required to compress the spring in Btu is calculated by
Where 1Btu =778
The work required to compress the spring,
eman Asked on February 19, 2018 in thermal fluid Sciences 4th solutions.
Explanation:
A stable air mass is most likely to have POOR SURFACE VISIBILITY.
Stable air mass refers to those air mass that have marked stability in their lower layers. The characteristics of stable air mass include the following: cloud cover, smooth air, uninterrupted precipitation and low visibility.<span />