Answer:
a planet
Explanation:
a planet is one which exerts these properties and therefore is the answer
The whistling sound from the hearing aids represents that your hearing aids is working perfectly ad is known as the "feedback". So, the given statement is true.
Answer: Option A
<u>Explanation:</u>
It's often sounds irritating when a hearing aids of your grandpa or Grandma whistles. especially, when they put them out of their ears. Actually, this feedback sound from hearing aids occur when the sounds from the outer side bounces back to the microphone of the hearing aids.
The sound bounces back when it doesn't gets inside of your ear canal so that one can hear the sound through the hearing aid. When the sounds bounces back in the hearing aid, it get re-amplified and thus we hear the whistle sound which is known as the feedback of the device.
It's not always the feedback sound though. Sometimes the device whistles when it has some mechanical defect or when one hugs the other one or water gets inside and damaged the whole system.
Answer:
D= 1999.2 m
Explanation:
Given that
Average velocity ,v= 0.98 m/s
time ,t= 34 min
We know that
1 min = 60 s
That is why
t= 34 x 60 =2040 s
We know that
Displacement = Average velocity x time
D= v t
Now by putting the values in the above equation
D= 0.98 x 2040 m
D= 1999.2 m (eastward)
The direction of the displacement will be towards eastward.
That is why the displacement will be 1999.2 m or we can say that 1.9992 km.
I<span>n </span>direct current<span> (</span>DC), the electric charge (current<span>) only flows in one direction. Electric charge in </span>alternating current<span> (</span>AC<span>), on the other hand, changes direction periodically. The voltage in </span>AC<span> circuits also periodically reverses because the </span>current<span> changes direction.</span>
Answer:
Kf= 36 J
W(net) = 32 J
Explanation:
Given that
m = 2 kg
F= 4 N
t= 2 s
Initial velocity ,u= 2 m/s
We know that rate of change of linear momentum is called force.
F= dP/dt
F.t = ΔP
ΔP = Pf - Pi
ΔP = m v - m u
v= Final velocity
By putting the values
4 x 2 = 2 ( v - 2)
8 = 2 ( v - 2)
4 = v - 2
v= 6 m/s
The final kinetic energy Kf
Kf= 1/2 m v²
Kf= 0.5 x 2 x 6²
Kf= 36 J
Initial kinetic energy Ki
Ki = 1/2 m u²
Ki= 0.5 x 2 x 2²
Ki = 4 J
We know that net work is equal to the change in kinetic energy
W(net) = Kf - Ki
W(net) = 36 - 4
W(net) = 32 J