Answer:
5.71 m/s ;
20 m/s
Explanation:
Blue car:
At time, t = 0 ; Initial position = 20 m
Final position, = 60m after 4 seconds
The velocity = change in distance / change in time.
Velocity of blue = (60 - 20)m ÷ ((4 + 3) - 0),
Velocity of blue car = 40 / 7
= 5.71 m/s
Red car:
Initial Position = 0 ; final Position = 60
Time taken = 3 seconds
Velocity of Red car = (60 - 0)m ÷ 3
Velocity of Red car = 60 / 3
= 20 m/s
Answer:
Given that the block have two applied masses 250 g at East and 100 g at South. In order to make a situation in which block moves towards point A, we have to apply minimum number of masses to the blocks. In order to prevent block moving toward East, we have to apply a mass at West, equal to the magnitude of mass at East but opposite in direction. Therefore, mass of 250 g at West is the required additional mass that has to be added. There is already 100 g of mass acting at South, that will attract block towards South or point A. No need to add further mass in North-South direction.
Answer:
By its amplitude.
Explanation:
loudness is sound intensity & intensity depends on square of amplitude. for example higher the amplitude higher the intensity which means higher the loudness.
The moon's orbital and rotational periods are identical or the same, I<span>ts rate of spin is done in unison with its rate of revolution (the time that is needed to complete one orbit). Thus, the moon rotates exactly once every time it circles the Earth.</span>
Answer:
Look at this picture hopefully it helps