The velocity and acceleration of the particle moving round the circle is;
<em><u>Velocity = 162.12 m/s</u></em>
<em><u>Velocity = 162.12 m/sAcceleration = 6.873 × 10^(-5) m/s²</u></em>
We are given;
Radius of circle; 382400 km = 382400000 m
Time; t = 27.3 days = 27.3 × 86400 s = 2358720 s
Now, formula for velocity is;
Velocity = distance/time
Thus;
I) velocity = 382400000/2358720
Velocity = 162.12 m/s
II) Acceleration is centripetal acceleration and is given by the formula;
a = v²/r
a = 162.12²/382400000
a = 6.873 × 10^(-5) m/s²
Read more at; brainly.com/question/12199398
The vectors adition we can find the magnitude of the force applied by the other astronaut is 11.25 N in the y direction
Parameters given
- Force of an astronaut Fₓ = 42 N
To find
The force is a vector magnitude for which the addition of vectors must be used, a very efficient method to perform this sum is to add the components of each vector and devise constructing the resulting vector using trigonometry and the Pythagorean theorem.
Let's use trigonometry to find the other force
tan θ =
F_ y = Fₓ tan θ
let's calculate
F_y = 42 tan 15
F_y = 11.25 N
Using the summation of vectors we can find the magnitude of the force applied by the other astronaut is 11.25 N in the y direction
Learn more about vector addition here:
brainly.com/question/15074838
Answer:
Explanation:
If H be the heat flowing in time t through an area of A having thickness d
H = k A x ( θ₂ - θ₁ ) t / d , k is thermal conductivity , ( θ₂ - θ₁ ) is temperature difference of walls
putting the given values
= (1.12 x 2.8x 5 x 9 x 16.7 x 60 x 60) / .08
= 1.06 x 10⁸ J .
Work = force x distance
200 Newtons x 20 meters
= 4,000 Joules
If both waves have the same wavelength, then the amplitude of
their sum could be anything between 1 cm and 9 cm, depending
on the phase angle between them.
If the waves have different wavelengths, then the resultant is a beat
with an amplitude of 9 cm.