1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
Black_prince [1.1K]
3 years ago
12

The graph below shows the distance traveled by the skateboarder on each of the different road conditions. Using the graph, deter

mine which of the roads was dry, wet, or muddy. Explain your answer using complete sentences.
Physics
1 answer:
igor_vitrenko [27]3 years ago
6 0

Answer:

Road A- dry

Road B- mud

Road C- wet

Explanation:

Surface conditions do affect the ease and speed with which a skateboarder can move, on a muddy surface, the tyres of the skate boards finds it difficult to establish adequate fictional force between the skates trees and the traveling surface. Hence, the muddy surface presents a very slippery travel ground for the skate, hence leading the to skateboarder needing to apply caution.

The speed on a wet surfave is height as the amount of firece that will be applied in other to accelerate is very small. The surface is wet and hence serves as a lubricant between the contact surface.

The dry road also has a high speed but lower than a wet surface, frictional force is high here and this tend to slow the skateboarder down except in sloppy terrains.

You might be interested in
A 16 foot ladder is leaning against a wall. If the top of the ladder slides down the wall at a rate of 3 feet per second, how fa
JulsSmile [24]

Answer:

11.625

Explanation:

L = length of the ladder = 16 ft

v_{y} = rate at which top of ladder slides down = - 3 ft/s

v_{x} = rate at which bottom of ladder slides

y = distance of the top of ladder from the ground

x = distance of bottom of ladder from wall = 4 ft

Using Pythagorean theorem

L² = x² + y²

16² = 4² + y²

y = 15.5 ft

Also using Pythagorean theorem

L² = x² + y²

Taking derivative both side relative to "t"

0 = 2x\frac{\mathrm{d} x}{\mathrm{d} t} + 2y\frac{\mathrm{d} y}{\mathrm{d} t}

0 = x v_{x} + y v_{y}

0 = 4 v_{x} + (15.5) (- 3)

v_{x} = 11.625 ft/s

7 0
3 years ago
The same ball is shot straight up a second time from the same gun, but this time the spring is compressed only half as far befor
Mekhanik [1.2K]

Answer:

The new height the ball will reach = (1/4) of the initial height it reached.

Explanation:

The energy stored in any spring material is given as (1/2)kx²

This energy is converted to potential energy, mgH, of the ball at its maximum height.

If the initial height reached is H

And the initial compression of the spring = x

So, mgH = (1/2)kx²

H = kx²/2mg

The new compression, x₁ = x/2

New energy of loaded spring = (1/2)kx₁²

And the new potential energy = mgH₁

mgH₁ = (1/2)kx₁²

But x₁ = x/2

mgH₁ = (1/2)k(x/2)² = kx²/8

H₁ = kx²/8mg = H/4 (provided all the other parameters stay constant)

6 0
3 years ago
A wave has a wavelength of 5 meters and a frequency of 3 hertz. What is the speed of the wave?
otez555 [7]
A sound wave<span> in a steel rail </span>has<span> a </span>frequency of<span> 620 </span>Hz<span> and a </span>wavelength<span> of 10.5 ... Find the </span>speed<span> of </span>a wave<span> with a </span>wavelength of 5<span> m and a </span>frequency of<span> 68 </span>Hz<span>.</span>
8 0
3 years ago
g A cylinder of mass m is free to slide in a vertical tube. The kinetic friction force between the cylinder and the walls of the
sdas [7]

Answer:

The vertical distance is  d = \frac{2}{k} *[mg + f]

Explanation:

From the question we are told that

   The mass of the cylinder is  m

    The kinetic frictional force is  f

Generally from the work energy theorem

    E  =  P +  W_f

Here E the the energy of the spring which is increasing and this is mathematically represented as

       E =  \frac{1}{2} * k  *  d^2

Here k is the spring constant

        P is the potential energy of the cylinder which is mathematically represented as

     P  = mgd

And

     W_f  is the workdone by friction which is mathematically represented as

      W_f  =  f *  d

So

    \frac{1}{2} * k  *  d^2 =  mgd +  f *  d

=>    \frac{1}{2} * k  *  d^2 =  d[mg +  f    ]

=>  \frac{1}{2} * k  *  d =  [mg +  f    ]

=> d = \frac{2}{k} *[mg + f]

5 0
3 years ago
A spring is stretched 2.0 cm. If the same spring is stretched 8.0 cm the ratio of the second and first potential energies of the
jok3333 [9.3K]
Potential energy of spring equals K times X squared divided by 2 where X is displacement

4 times squared equals 16

choose 1st answer
 
6 0
3 years ago
Other questions:
  • A twig from a tree drops from a 200m high cliff on to a beach below.during its fall 40% twig's energy is converted into thermal
    10·1 answer
  • Which statement is true?
    11·1 answer
  • Question 1<br> The orange line is measuring the
    5·1 answer
  • How do you know the force for an acceleration of zero?
    8·1 answer
  • Can you give me the definition of sound wave
    7·2 answers
  • . Which is the transfer of energy as waves moving through space?
    7·1 answer
  • A single loop of wire with an area of 0.0780 m2 is in a uniform magnetic field that has an initial value of 3.80 T, is perpendic
    5·1 answer
  • A thermionic tube with only a cathode and an anode is called?​
    10·2 answers
  • During crystallisation the crystals separate out from the hot ________solution of a substance on cooling
    5·1 answer
  • A cylindrical tube 12.5 cm high and 1.5 cm in diameter is used to collect blood samples. how many cubic decimeters (dm3) of bloo
    12·1 answer
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!