Answer: Magnitude of the average force exerted on the glove by the other boxer is 827.86 N (approximately 828 N).
Explanation: Impulse is defined as the force acting on an object for a short period or interval of time. 
Mathematically it is given by the relation:
Impulse = Force 
 Time
According to the numerical values given in the question, I = 202 Ns and T = 0.244 s
So, Force F = 
 = 
 = 827.86 N 
Magnitude of the average force exerted on the glove by the other boxer is 827.86 N (approximately 828 N).
 
        
             
        
        
        
Answer:
 7.89 7.91 
Explanation:
The ranges of measurement lie between 7.92-0.05 and 7.92+0.05
7.87g and 7.97g
 
        
                    
             
        
        
        
Answer:
undergone a chemical change
Explanation:
 
        
                    
             
        
        
        
Answer:
The resultant force would (still) be zero.
Explanation:
Before the 600-N force is removed, the crate is not moving (relative to the surface.) Its velocity would be zero. Since its velocity isn't changing, its acceleration would also be zero. 
In effect, the 600-N force to the left and 200-N force to the right combines and acts like a 400-N force to the left. 
By Newton's Second Law, the resultant force on the crate would be zero. As a result, friction (the only other horizontal force on the crate) should balance that 400-N force. In this case, the friction should act in the opposite direction with a size of 400 N.
When the 600-N force is removed, there would only be two horizontal forces on the crate: the 200-N force to the right, and friction. The maximum friction possible must be at least 200 N such that the resultant force would still be zero. In this case, the static friction coefficient isn't known. As a result, it won't be possible to find the exact value of the maximum friction on the crate. 
However, recall that before the 600-N force is removed, the friction on the crate is 400 N. The normal force on the crate (which is in the vertical direction) did not change. As a result, one can hence be assured that the maximum friction would be at least 400 N. That's sufficient for balancing the 200-N force to the right. Hence, the resultant force on the crate would still be zero, and the crate won't move.
 
        
             
        
        
        
Answer:

Explanation:
Given that,
The compression in the spring, x = 0.0647 m
Speed of the object, v = 2.08 m/s
To find,
Angular frequency of the object.
Solution,
We know that the elation between the amplitude and the angular frequency in SHM is given by :

A is the amplitude
In case of spring the compression in the spring is equal to its amplitude



So, the angular frequency of the spring is 32.14 rad/s.