Answer:
Ionic bonds are important because they allow the synthesis of specific organic compounds. Scientists can manipulate ionic properties and these interactions in order to form desired products. Covalent bonds are especially important since most carbon molecules interact primarily through covalent bonding
Explanation:
hope this helps!! have a great day!! (can u mark me brailyest plzz) :D
A highly corrosive acid should have a Ph balance between 0-6
Volume Ba(OH)2 = 23.4 mL in liters :
23.4 / 1000 => 0.0234 L
Molarity Ba(OH)2 = 0.65 M
Volume HNO3 = 42.5 mL in liters:
42.5 / 1000 => 0.0425 L
number of moles Ba(OH)2 :
n = M x V
n = 0.65 x 0.0234
n = 0.01521 moles of Ba(OH)2
Mole ratio :
<span>Ba(OH)2 + 2 HNO3 = Ba(NO3)2 + 2 H2O
</span>
1 mole Ba(OH)2 ---------------- 2 moles HNO3
0.01521 moles ----------------- moles HNO3
moles HNO3 = 0.01521 x 2 / 1
moles HNO3 = 0.03042 / 1
= 0.03042 moles HNO3
Therefore:
M ( HNO3 ) = n / volume ( HNO3 )
M ( HNO3 ) = 0.03042 / 0.0425
M ( HNO3 ) = 0.715 M
1 mole H2O ---------------------- 6.02x10²³ molecules
4 moles H2O--------------------- y molecules
y = 4 * 6.02x10²³
y = 2.4x10^24 molecules
answer b
hope this helps!.
Answer:
21.5mL of a 0.100M HCl are required
Explanation:
The sodium phenoxide reacts with HCl to produce phenol and NaCl in a 1:1 reaction.
To solve this question we need to find the moles of sodium phenoxide. These moles = Moles of HCl required to reach equivalence point and, with the concentration, we can find the needed volume as follows:
<em>Mass NaC6H5O:</em>
1.000g * 25% = 0.250g NaC6H5O
<em>Moles NaC6H5O -116.09g/mol-</em>
0.250g NaC6H5O * (1mol/116.09g) = 2.154x10⁻³ moles = Moles of HCl required
<em>Volume 0.100M HCl:</em>
2.154x10⁻³ moles HCl * (1L/0.100mol) = 0.0215L =
<h3>21.5mL of a 0.100M HCl are required</h3>