Explanation:
solution has a pH of 2 is a strong acid.
There are 0.566 moles of carbonate in sodium carbonate.
<h3>CALCULATE MOLES:</h3>
- The number of moles of carbonate (CO3) in sodium carbonate (Na2CO3) can be calculated by dividing the mass of carbonate in the compound by the molar mass of the compound.
- no. of moles of CO3 = mass of CO3 ÷ molar mass of Na2CO3
- Molar mass of Na2CO3 = 23(2) + 12 + 16(3)
- = 46 + 12 + 48 = 106g/mol
- mass of CO3 = 12 + 48 = 60g
- no. of moles of CO3 = 60/106
- no. of moles of CO3 = 0.566mol
- Therefore, there are 0.566 moles of carbonate in sodium carbonate.
Learn more about number of moles at: brainly.com/question/1542846
Answer:
this is what i got
Explanation:
α-decay: When a radioactive nucleus disintegrates by emitting an αα-particle, the atomic number decreases by two and mass number decreases by four. Example: 88Ra226→86Rn222+2He4.
Answer:
By absorbing energy electron is jump into higher energy level. This is called excitation.
Explanation:
The electron is jumped into higher level and back into lower level by absorbing and releasing the energy.
The process is called excitation and de-excitation.
Excitation:
When the energy is provided to the atom the electrons by absorbing the energy jump to the higher energy levels. This process is called excitation. The amount of energy absorbed by the electron is exactly equal to the energy difference of orbits. For example if electron jumped from K to L it must absorbed the energy which is equal the energy difference of these two level. The excited electron thus move back to lower energy level which is K by releasing the energy.
De-excitation:
When the excited electron fall back to the lower energy levels the energy is released in the form of radiations. this energy is exactly equal to the energy difference between the orbits. The characteristics bright colors are due to the these emitted radiations. These emitted radiations can be seen if they are fall in the visible region of spectrum.