Answer:
7/9
Step-by-step explanation:
Given: In the given figure, there are two equilateral triangles having side 50 yards each and two sectors of radius (r) = 50 yards each with the sector angle θ = 120°
To Find: The length of the park's boundary to the nearest yard.
Calculation:
The length of the park's boundary (P) = 2× side of equilateral triangle + 2 × length of the arc
or, (P) = 2× 50 yards + 2× (2πr) ( θ ÷360°)
or, (P) = 2× 50 yards + 2× (2×3.14× 50 yards) ( 120° ÷360°)
or, (P) = 100 yards + 2× (2×3.14× 50 yards) ( 120° ÷360°)
or, (P) = 100 yards + 209.33 yards
or, (P) = 309.33 yards ≈309 yards
Hence, the option D:309 yards is the correct option.
Let t=number of years since 1991.
Then
P(t)=147 e^(kt) ... in millions
P(0)=147 e^(0)=147
P(7)=147 e^(7k)=153
e^(7k)=(153/147)
take ln both sides
ln(e^(7k))=ln(153/147)
7k=0.0400 => k=0.005715
Year 2017=>t=2017-1991=26
P(26)=147e^(26*.005715)=170.55
Answer: in 2017, the projected population is 170.55 millions.
X+y= 26 and 4.75x + 2.25y= 83.50
y=26-x( substitute this into second equation for y and solve for x)
4.75x + 2.25(26-x)= 83.50
4.75x + 58.5-2.25x= 83.50
x= 10
Now solve for y by substituting your answer for x
10+ y= 26
y=16
Therefore, 16 tickets were purchased for kids and 10 for adults.