Answer:
E) C₂H₄(g) + H₂(g) ⇒ C₂H₆(g)
Explanation:
Which ONE of the following is an oxidation–reduction reaction?
A) PbCO₃(s) + 2 HNO₃(aq) ⇒ Pb(NO₃)₂(aq) + CO₂(g) + H₂O(l). NO. All the elements keep the same oxidation numbers.
B) Na₂O(s) + H₂O(l) ⇒ 2 NaOH(aq). NO. All the elements keep the same oxidation numbers.
C) SO₃(g) + H₂O(l) ⇒ H₂SO₄(aq). NO. All the elements keep the same oxidation numbers.
D) CO₂(g) + H₂O(l) ⇒ H₂CO₃(aq). NO. All the elements keep the same oxidation numbers.
E) C₂H₄(g) + H₂(g) ⇒ C₂H₆(g). YES. <u>C is reduced</u> and <u>H is oxidized</u>.
Answer:
Solar Power, HEP (Hydroelectric Power), Wind Power, etc...
Explanation:
These are some common examples of renewable energy source.
This is true do to all the other particules around
i really dont know and im so so so so sorry
Answer:
Mass = 9.58 g
Explanation:
Given data:
Mass of Zn = 2g
Theoretical yield of ZnI₂ = ?
Solution:
Chemical equation:
Zn + I₂ → ZnI₂
Number of moles of Zn:
Number of moles = mass/molar mass
Number of moles = 2g / 65.38 g/mol
Number of moles = 0.03 mol
Now we will compare the moles of Zn and ZnI₂.
Zn : ZnI₂
1 : 1
0.03 : 0.03
Mass of ZnI₂:
Mass = number of moles × molar mass
Mass = 0.03 mol × 319.22 g/mol
Mass = 9.58 g