Answer: 670K
Explanation:
Given that,
Original volume of gas V1 = 1.22 L
Original temperature T1 = 286 K
New volume V2 = 2.86 L
New temperature T2 = ?
Since volume and temperature are involved while pressure is constant, apply the formula for Charles law
V1/T1 = V2/T2
1.22 L/286 K = 2.86 L/ T2
Cross multiply
1.22 L x T2 = 286 K x 2.86 L
1.22T2 = 817.96
Divide both sides by 1.22
1.22T2/1.22 = 817.96/1.22
T2 = 670.459 K (Round to the nearest whole number as 670 K)
Thus, the temperature of the gas is 670 Kelvin
<u>Answer:</u> The equilibrium concentration of water is 0.597 M
<u>Explanation:</u>
Equilibrium constant in terms of concentration is defined as the ratio of concentration of products to the concentration of reactants each raised to the power their stoichiometric ratios. It is expressed as 
For a general chemical reaction:

The expression for
is written as:
![K_{c}=\frac{[C]^c[D]^d}{[A]^a[B]^b}](https://tex.z-dn.net/?f=K_%7Bc%7D%3D%5Cfrac%7B%5BC%5D%5Ec%5BD%5D%5Ed%7D%7B%5BA%5D%5Ea%5BB%5D%5Eb%7D)
The concentration of pure solids and pure liquids are taken as 1 in the expression.
For the given chemical reaction:

The expression of
for above equation is:
![K_c=\frac{[H_2O]^2}{[H_2S]^2\times [O_2]}](https://tex.z-dn.net/?f=K_c%3D%5Cfrac%7B%5BH_2O%5D%5E2%7D%7B%5BH_2S%5D%5E2%5Ctimes%20%5BO_2%5D%7D)
We are given:
![[H_2S]_{eq}=0.671M](https://tex.z-dn.net/?f=%5BH_2S%5D_%7Beq%7D%3D0.671M)
![[O_2]_{eq}=0.587M](https://tex.z-dn.net/?f=%5BO_2%5D_%7Beq%7D%3D0.587M)

Putting values in above expression, we get:
![1.35=\frac{[H_2O]^2}{(0.671)^2\times 0.587}](https://tex.z-dn.net/?f=1.35%3D%5Cfrac%7B%5BH_2O%5D%5E2%7D%7B%280.671%29%5E2%5Ctimes%200.587%7D)
![[H_2O]=\sqrt{(1.35\times 0.671\times 0.671\times 0.587)}=0.597M](https://tex.z-dn.net/?f=%5BH_2O%5D%3D%5Csqrt%7B%281.35%5Ctimes%200.671%5Ctimes%200.671%5Ctimes%200.587%29%7D%3D0.597M)
Hence, the equilibrium concentration of water is 0.597 M
1) Chemical equation
2Al + 6 HCl ---> 2Al Cl3 + 3 H2
2) molar ratios
2 mol Al : 3 moles H2
3) Proportion
2 mol Al / 3mol H2 = x / 9 mol H2
4) Solve for x
x = 9 mol H2 * 2 mol Al / 3 mol H2 = 6 mol Ag
Answer: 6 moles
C.ice has a lower freezing point than liquid water
hope this helps
Answer:
hope this help !
Explanation:
Use the given functions to set up and simplify 173 ° C .
1.5 =
CH4 = CH4
4.4 = CH4
173 ° C = CH4