Constant acceleration of plane = 3m/s²
a) Speed of the plane after 4s
Acceleration = speed/time
3m/s² = speed/4s
S = 12m/s
The speed of the plane after 4s is 12m/s.
b) Flight point will be termed as the point the plane got initial speed, u, 20m/s
Find speed after 8s, v
a = 3m/s²
from,
a = <u>v</u><u> </u><u>-</u><u> </u><u>u</u>
t
3 = <u>v</u><u> </u><u>-</u><u> </u><u>2</u><u>0</u>
8
24 = v - 20
v = 44m/s
After 8s the plane would've 44m/s speed.
Answer:
position 4
Explanation:
if the north is tilted away it gets no sunlight, so its winter
ANSWER:
IV, Type of dish detergent. DV, height of foam. CV, type of container, amount of water in container, temperature of water, time the container is agitated.
Explanation:
Independent variable(IV)- what you change during the experiment.
dependent variable(DV)- what you're measuring during an experiment. The dependent variable is DEPENDENT because it's results DEPEND on the independent variable at play.
Constant variables(CV)- things that do not change in order to isolate the tested variables as much as possible.
Answer:
a) h = 593.50 m
b) h₁₁ = 103 m
c) vf = 107.91 m/s
Explanation:
a)
We will use second equation of motion to find the height:

where,
h = height = ?
vi = initial speed = 0 m/s
t = time taken = 11 s
g = 9.81 /s²
Therefore,

<u>h = 593.50 m</u>
b)
For the distance travelled in last second, we first need to find velocity at 10th second by using first equation of motion:

where,
vf = final velocity at tenth second = v₁₀ = ?
t = 10 s
vi = 0 m/s
Therefore,

Now, we use the 2nd equation of motion between 10 and 11 seconds to find the height covered during last second:

where,
h = height covered during last second = h₁₁ = ?
vi = v₁₀ = 98.1 m/s
t = 1 s
Therefore,

<u>h₁₁ = 103 m</u>
c)
Now, we use first equation of motion for complete motion:

where,
vf = final velocity at tenth second = ?
t = 11 s
vi = 0 m/s
Therefore,

<u>vf = 107.91 m/s</u>