1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
lyudmila [28]
3 years ago
8

At what speed will a box be falling at a time t = 0.75 s after being dropped?

Physics
1 answer:
IRINA_888 [86]3 years ago
8 0

Explanation:

Initial speed(u)= 0 m/s (Ball is dropped)

time(t)= 0.75 s

acceleration(a)= 10 m/s² (gravity)

Final speed(v)= u+at

v=0+(10)× 0.75

v=7.5 m/s

Speed is 7.5 m/s

You might be interested in
You are listening to the radio when one of your favorite songs comes on, so you turn up the volume. If you managed to increase t
andrew-mc [135]

To solve this problem we need to apply the corresponding sound intensity measured from the logarithmic scale. Since in the range of intensities that the human ear can detect without pain there are large differences in the number of figures used on a linear scale, it is usual to use a logarithmic scale. The unit most used in the logarithmic scale is the decibel yes described as

\beta_{dB} = 10log_{10} \frac{I}{I_0}

Where,

I = Acoustic intensity in linear scale

I_0 = Hearing threshold

The value in decibels is 17dB, then

17dB = 10log_{10} \frac{I}{I_0}

Using properties of logarithms we have,

\frac{17}{10} = log_{10} \frac{I}{I_0}

log_{10} \frac{I}{I_0} = 1.7

\frac{I}{I_0} = 10^{1.7}

\frac{I}{I_0} = 50.12 W/m^2

Therefore the factor that the intensity of the sound was 50.12W/m^2

5 0
3 years ago
Mercury’s natural state is where the atoms are close to each other but are still free to pass by each other. In which state(s) c
Georgia [21]

Answer:

Mercury's natural state is where the atoms are close to each other but are still free to pass by each other. In which state(s) could mercury naturally exist?

Liquid is the answer

Explanation:

4 0
2 years ago
1)Determine, in terms of unit vectors, the resultant of the five forces illustrated in the figure, Consider F1=20 N, F2= 12 N, F
LiRa [457]

Explanation:

1) F₁ lies in a plane perpendicular to the xy plane, 60° from the x axis.  The angle between F₁ and the +z axis is 30°.  Therefore, the vector is:

<F₁> = 20 (sin 30° cos 60° i + sin 30° sin 60° j + cos 30° k)

<F₁> = 20 (¼ i + ¼√3 j + ½√3 k)

<F₁> = 5 i + 5√3 j + 10√3 k

F₂ is in the xy plane.  Its slope is -24/7.  The vector is:

<F₂> = 12 (-⁷/₂₅ i + ²⁴/₂₅ j + 0 k)

<F₂> = -3.36 i + 11.52 j

F₃ is parallel to the +x axis.  The vector is:

<F₃> = 17 (i + 0 j + 0 k)

<F₃> = 17 i

F₄ is parallel to the -z axis.  The vector is:

<F₄> = 15 (0 i + 0 j − k)

<F₄> = -15 k

F₅ is in the xy plane.  It forms a 15° angle with the -y axis.  The vector is:

<F₅> = 9 (-sin 15° i − cos 15° j + 0 k)

<F₅> = -9 sin 15° i − 9 cos 15° j

The resultant vector is therefore:

<F> = (5 − 3.36 + 17 − 9 sin 15°) i + (5√3 + 11.52 − 9 cos 15°) j + (10√3 − 15) k

<F> = 16.31 i + 11.49 j + 2.32 k

2) Sum of forces at point B in the x direction:

∑F = ma

Tbc cos 40° − ¹⁵/₁₇ Tab = 0

Tbc cos 40° = ¹⁵/₁₇ Tab

Tbc = 1.15 Tab

Sum of forces at point B in the y direction:

∑F = ma

Tbc sin 40° + ⁸/₁₇ Tab − mAg = 0

Tbc sin 40° + ⁸/₁₇ Tab = (2 kg) (10 m/s²)

(1.15 Tab) sin 40° + ⁸/₁₇ Tab = 20 N

1.21 Tab = 20 N

Tab = 16.52 N

Tbc = 19.02 N

Sum of forces at point C in the x direction:

∑F = ma

Tcd sin 25° − Tbc cos 40° = 0

Tcd sin 25° = Tbc cos 40°

Tcd = 1.81 Tbc

Tcd = 34.48 N

3(a) When the crane is on the verge of tipping, the center of gravity is directly over point F.  Relative to point A:

3.7 m = [ (390 kg) (0.9 m) + (90 kg) (9 m cos θ + 1.7 m) + (80 kg) (9 m cos θ + 2.9 m) ] / (390 kg + 90 kg + 80 kg)

2072 kgm = 351 kgm + 810 kgm cos θ + 153 kgm + 720 kgm cos θ + 232 kgm

1336 kgm = 1530 kgm cos θ

θ = 29.17°

3(b) 3.7 m = [ (390 kg) (0.9 m) + (90 kg) (x + 1.7 m) + (80 kg) (x + 2.9 m) ] / (390 kg + 90 kg + 80 kg)

2072 kgm = 351 kgm + (90 kg) x + 153 kgm + (80 kg) x + 232 kgm

1336 kgm = (170 kg) x

x = 7.86 m

4) Find the lengths of the cables.

Lab = √((2 m)² + (3 m)² + (5 m)²)

Lab = √38 m

Lac = √((2 m)² + (3 m)² + (5 m)²)

Lac = √38 m

Lde = √((2 m)² + (3 m)²)

Lde = √13 m

Sum of forces in the x direction:

∑F = ma

-5/√38 Fab − 5/√38 Fac − 2/√13 Fde + Rx = 0

Sum of forces in the y direction:

∑F = ma

2/√38 Fab − 2/√38 Fac = 0

Fab = Fac

Sum of forces in the z direction:

∑F = ma

3/√38 Fab + 3/√38 Fac + 3/√13 Fde − mg = 0

Sum of moments about the y-axis:

∑τ = Iα

(3/√38 Fab) (5 m) + (3/√38 Fac) (5 m) + (3/√13 Fde) (2 m) − (mg) (2 m) = 0

Substitute Fab = Fac and simplify:

6/√38 Fab + 3/√13 Fde − mg = 0

30/√38 Fab + 6/√13 Fde − 2mg = 0

Double first equation:

12/√38 Fab + 6/√13 Fde − 2mg = 0

Subtract from the second equation:

28/√38 Fab = 0

Fab = 0

Fac = 0

Solve for Fde:

3/√38 Fab + 3/√38 Fac + 3/√13 Fde − mg = 0

3/√13 Fde = mg

3/√13 Fde = (1.7 kg) (10 m/s²)

Fde = 20.43 N

Solve for Rx:

-5/√38 Fab − 5/√38 Fac − 2/√13 Fde + Rx = 0

Rx = 2/√13 Fde

Rx = 11.33 N

8 0
3 years ago
A bubble of air is rising up through the ocean. When it is at a depth of 20.0 m below the surface, where the temperature is 5.00
kotegsom [21]

Answer:

the volume is 0.253 cm³

Explanation:

The pressure underwater is related with the pressure in the surface through Pascal's law:

P(h)= Po + ρgh

where Po= pressure at a depth h under the surface (we assume = 1atm=101325 Pa) , ρ= density of water ,g= gravity , h= depth at h meters)

replacing values

P(h)= Po + ρgh = 101325 Pa + 1025 Kg/m³ * 9.8 m/s² * 20 m = 302225 Pa

Also assuming that the bubble behaves as an ideal gas

PV=nRT

where

P= absolute pressure, V= gas volume ,n= number of moles of gas, R= ideal gas constant , T= absolute temperature

therefore assuming that the mass of the bubble is the same ( it does not absorb other bubbles, divides into smaller ones or allow significant diffusion over its surface) we have

at the surface) PoVo=nRTo

at the depth h) PV=nRT

dividing both equations

(P/Po)(V/Vo)=(T/To)

or

V=Vo*(Po/P)(T/To) = 0.80 cm³ * (101325 Pa/302225 Pa)*(277K/293K) = 0.253 cm³

V = 0.253 cm³

3 0
3 years ago
A beetle crawling around on a desk walks 19 cm in 17 seconds to the right. It then changes direction and walks 6 cm in 6 seconds
Andre45 [30]

Answer: 11.5secs

Explanation:

They said what the average speed is so to find the average you have to find the mean so 17secs + 6secs = 23secs / 2 = 11.5secs.

6 0
3 years ago
Other questions:
  • Where is each subatomic particle is found in an atom
    6·1 answer
  • If object a has more mass than object to be does object contain more matter explain
    9·1 answer
  • Michael Jordan, el célebre basquetbolista, ganó el torneo de clavadas de la NBA en 1988. Para lograr la hazaña saltó 1.35 metros
    15·1 answer
  • Find the average power Pavg created by the force F in terms of the average speed vavg of the sled.
    10·1 answer
  • A 85.4 kg ice skater is moving at 5.97 m/s when she grabs the loose end of a rope, the opposite end of which is tied to a pole.
    12·1 answer
  • A ball is dropped from rest from the top of a building. What force is responsible for th
    15·2 answers
  • A 100N effort force is applied to a machine and lifts a 400N object. What is the MA of the machine?
    7·1 answer
  • HELP ME PLSS!! Will mark brainiest
    6·2 answers
  • A Celcius and a Fahrenheit thermometer are dipped in boiling water. The water temperature is lowered until the Fahrenheit thermo
    7·1 answer
  • How does science involve creativity
    11·1 answer
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!