<u>Answer:</u> The Young's modulus for the wire is 
<u>Explanation:</u>
Young's Modulus is defined as the ratio of stress acting on a substance to the amount of strain produced.
The equation representing Young's Modulus is:

where,
Y = Young's Modulus
F = force exerted by the weight = 
m = mass of the ball = 10 kg
g = acceleration due to gravity = 
l = length of wire = 2.6 m
A = area of cross section = 
r = radius of the wire =
(Conversion factor: 1 m = 1000 mm)
= change in length = 1.99 mm = 
Putting values in above equation, we get:

Hence, the Young's modulus for the wire is 
Answer:
i)-6.25m/s
ii)18 metres
iii)26.5 m/s or 95.4 km/hr
Explanation:
Firstly convert 90km/hr to m/s
90 × 1000/3600 = 25m/s
(i) Apply v^2 = u^2 + 2As...where v(0m/s) is the final speed and u(25m/s) is initial speed and also s is the distance moved through(50 metres)
0 = (25)^2 + 2A(50)
0 = 625 + 100A....then moved the other value to one
-625 = 100A
Hence A = -6.25m/s^2(where the negative just tells us that its deceleration)
(ii) Firstly convert 54km/hr to m/s
In which this is 54 × 1000/3600 = 15m/s
then apply the same formula as that in (i)
0 = (15)^2 + 2(-6.25)s
-225 = -12.5s
Hence the stopping distance = 18metres
(iii) Apply the same formula and always remember that the deceleration values is the same throughout this question
0 = u^2 + 2(-6.25)(56)
u^2 = 700
Hence the speed that the car was travelling at is the,square root of 700 = 26.5m/s
In km/hr....26.5 × 3600/1000 = 95.4 km/hr
From Boyle's law, the volume of a fixed mass of a gas is inversely proportional to its pressure at constant absolute temperature.
Therefore; P1V1 =P2V2; where PV is a constant
hence; 12 × 6 = 3× p2
p2 = 72/3
= 24 atm
Therefore; the new pressure will be 24 atm
It’s not Cereal and Milk, carbonated drinks, and smoky air