1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
alexandr402 [8]
3 years ago
8

A sample of an unknown substance has a mass of 0. 158 kg. If 2,510. 0 J of heat is required to heat the substance from 32. 0°C

to 61. 0°C, what is the specific heat of the substance? Use q equals m C subscript p Delta T. 0. 171 J/(gi°C) 0. 548 J/(gi°C) 15. 9 J/(gi°C) 86. 6 J/(gi°C).
Physics
1 answer:
guapka [62]3 years ago
4 0

The specific heat of the unknown substance with a mass of 0.158kg is 0.5478 J/g°C

HOW TO CALCULATE SPECIFIC HEAT CAPACITY:

The specific heat capacity of a substance can be calculated using the following formula:

Q = m × c × ∆T

Where;

  • Q = quantity of heat absorbed (J)
  • c = specific heat capacity (4.18 J/g°C)
  • m = mass of substance
  • ∆T = change in temperature (°C)

According to this question, 2,510.0 J of heat is required to heat the 0.158kg substance from 32.0°C to 61.0°C. The specific heat capacity can be calculated:

2510 = 158 × c × (61°C - 32°C)

2510 = 4582c

c = 2510 ÷ 4582

c = 0.5478 J/g°C

Therefore, the specific heat capacity of the unknown substance that has a mass of 0.158 kg is 0.5478 J/g°C.

Learn more about specific heat capacity at: brainly.com/question/2530523

You might be interested in
A solid object has a mass of 104 kg and a volume of 1,278 m3. What is its density?
MrMuchimi
The density is 81.4 g/m3. Before you start plugging numbers into the density formula (D=M/V), you should convert 104 kg to grams, which ends up being 104,000 grams. Then you can plug in the 104,000 grams and 1,278 m3 into the formula. When you divide the mass by the volume, you get a really long decimal, which you can round to 81.4 g/m3, or whatever place your teacher wants you to round to.
4 0
3 years ago
An electric furnace is to melt 40 kg of aluminium/hour. The initial temperature of aluminium is 32°C. Given that aluminium has s
gizmo_the_mogwai [7]

Answer:

Part a)

P = 13.93 kW

Part b)

R = 8357.6 Cents

Explanation:

Part A)

heat required to melt the aluminium is given by

Q = ms\Delta T + mL

here we have

Q = 40(950)(680 - 32) + 40(450 \times 10^3)

Q = 24624 kJ + 18000 kJ

Q = 42624 kJ

Since this is the amount of aluminium per hour

so power required to melt is given by

P = \frac{Q}{t}

P = \frac{42624}{3600} kW

P = 11.84 kW

Since the efficiency is 85% so actual power required will be

P = \frac{11.84}{0.85} = 13.93 kW

Part B)

Total energy consumed by the furnace for 30 hours

Energy = power \times time

Energy = 13.93 kW\times 30 h

Energy = 417.9 kWh

now the total cost of energy consumption is given as

R = P \times 20 \frac{Cents}{kWh}

R = 417.9 kWh\times  20 \frac{cents}{kWh}

R = 8357.6 Cents

3 0
3 years ago
A particle of mass m collides with a second particle of mass m. Before the collision, the first particle is moving in the x-dire
oee [108]

Answer:

a) v, v

b) 2mv^2

c) Elastic collion

Explanation:

(a) The velocity of the second particle after the collision is (v2x,v2y)=(v,−v).  From momentum conservation in x-direction

Here x, y represent direction.They are not variable. 1 and 2 represent before and after.

2vm=v1xm+v2xm, we find v1x=v.

From momentum conservation in y-direction

0 =v1ym+v2ym, we findv1y=v.

(b) By energy conservation principle

Before: K=1/2m(2v)^2=2mv^2.

After: K=1/2m(v^2(1x)+v^2(1y))+12m(v22x+v22y)=2mv^2

(c) The collision is elastic

6 0
3 years ago
Aligned magnetic domains are only present in which of the following?
butalik [34]

Answer:

i think c

Explanation:

8 0
3 years ago
The amount of water on earth now is the same as when dinosaurs existed. True or false? PLEASEEEEE HELPPPPPP
Mnenie [13.5K]

Answer: True

Explanation: Because of the way this water cycle has always circulated our planet, there is indeed a chance that the water in your glass is the same water that thirsty dinosaurs were drinking about 65 million years ago

5 0
3 years ago
Read 2 more answers
Other questions:
  • Charge is placed on two conducting spheres that are very far apart and connected by a long thin wire. The radius of the smaller
    7·1 answer
  • A uniform ladder of mass m and length L stands on a floor at angle α, leaning against a frictionless wall. The static coefficien
    13·1 answer
  • Suppose you are drinking root beer from a conical paper cup. The cup has a diameter of 10 centimeters and a depth of 13 centimet
    15·1 answer
  • Find the average power Pavg created by the force F in terms of the average speed vavg of the sled.
    10·1 answer
  • An object in free fall travels a distance s that is directly proportional to the square of the time t. If an object falls 1088 f
    10·1 answer
  • What did isaac Newton believe light was made of
    13·2 answers
  • Explain Alfred wegener's hypothesis
    6·1 answer
  • How do you find the value of e?
    12·1 answer
  • What distinguishes a nebula and a star?
    14·1 answer
  • I need help someone answer, thanks!
    6·2 answers
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!