1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
drek231 [11]
3 years ago
7

A physics student stands on a cliff overlooking a lake and decides to throw a softball to her friends in the water below. She th

rows the softball with a velocity of 21.5 m/s at an angle of 33.5∘ above the horizontal. When the softball leaves her hand, it is 13.5 m above the water. How far does the softball travel horizontally before it hits the water?
Physics
1 answer:
aliina [53]3 years ago
3 0

Answer:

58.5 m

Explanation:

First of all, we need to find the total time the ball takes to reach the water. This can be done by looking at the vertical motion only.

The initial vertical velocity of the ball is

u_y = u sin \theta

where

u = 21.5 m/s is the initial speed

\theta=33.5^{\circ} is the angle

Substituting,

u_y = (21.5) sin 33.5^{\circ} =11.9 m/s

The vertical position of the ball at time t is given by

y = h + u_y t + \frac{1}{2}gt^2

where

h = 13.5 m is the initial heigth

g = -9.8 m/s^2 is the acceleration of gravity (negative sign because it points downward)

The ball reaches the water when y = 0, so

0 = h + u_yt +\frac{1}{2}gt^2\\0 = 13.5 +11.9 t - 4.9t^2

Which gives two solutions: t = 3.27 s and t = -0.84 s. We discard the negative solution since it is meaningless.

The horizontal velocity of the ball is

u_y = u cos \theta = (21.5) cos 33.5^{\circ} =17.9 m/s

And since the motion along the horizontal direction is a uniform motion, we can find the horizontal distance travelled by the ball as follows:

d= u_x t = (17.9)(3.27)=58.5 m

You might be interested in
A 250 kg flatcar 25 m long is moving with a speed of 3.0 m/s along horizontal frictionless rails. A 61 kg worker starts walking
Anna11 [10]

Answer:

x=31.09m

Explanation:

p1=p2

The momentum of flatcar and the momentum of the worker so

The velocity of the worker is:

m_{f}*v_{f}=m_{w}*v_{w}\\\\v_{f}=\frac{m_{f}*v_{f}}{m_{w}}\\v_{f}=\frac{61kg*3.0\frac{m}{s}}{250kg}\\v_{f}=0.732\frac{m}{s}

The total motion has a total velocity and is

Vt=v_{w}+v_{f}\\Vt=0.732\frac{m}{s}+3.0\frac{m}{s}\\Vt=3.732\frac{m}{s}

The time the worker take walking is

t=\frac{x}{v_{w}}\\t=\frac{25m}{3\frac{m}{s}}=8.33s

Now the total time and the total velocity determinate the motion of tha flatcar how far has moved

x=t*Vt\\x=8.33s*3.732\frac{m}{s} \\x=31.09m

5 0
3 years ago
Which of the follow represent a chemical changes
mixer [17]

Answer:

C) steel turning to rust in salt air

Explanation:

The missing options are:

A) ice melting to form liquid water

B) water boiling to form steam

C) steel turning to rust in salt air

D) sugar dissolving into hot coffee

In a chemical change the atoms of the reacting compounds are reordered forming new compounds. In a chemical change, new compounds appear, but in a physical change not.

Then, change of states like ice melting and water boiling are not chemical changes.

During steel rust, components of steel, like iron, are oxidized, that is, reacts with oxygen forming oxides.

The dissolution of sugar into hot coffee is a physical change in which sugar molecules get further apart in the coffee,  but they don't change.

5 0
4 years ago
Adhira loves to ride her bike around the neighborhood. She starts riding 1.2 miles at 30° S of E. Then, she rides another 2.0 mi
zepelin [54]

Answer:

D = 1.8677 miles , θ = 24.28º at South of West

Explanation:

This is an exercise in adding vectors, the easiest way to solve them is to decompose the vectors and add each component algebraically. Let's use trigonometry

first displacement. d = 1.2 miles to 30º south of East

     cos ( 360-30) = cos (-30) = x₁ / d

     sin (-30) = y₁ / d

     x₁ = d cos (-30)

     y₁ = d sin (-30)

     x₁ = 1.2 cos (-30) = 1,039 miles

     y₁ = 1.2 sin (-30) = -0.6 miles

second shift. d = 2.0 miles to 20º West of South

       cos (270-20) = x₂ / d

       cos (250) = y₂ / d

       x₂ = 2.0 cos 250 = -0.684 miles

       y₂ = 2.0 sin250 = -1.879 miles

Third displacement. d = 1.6 miles to 30º South of West

       cos (180 + 30) = x₃ / d

       sin (210) = y₃ / d

       x₃ = 1.6 cos 210 = -1.3856 miles

       y₃ = 1.6 sin 210 = -0.8 miles

Fourth displacement. d = 2.6 miles to 15º West of North

       cos (90 + 15) = x₄ / d

       sin (105) = y₄ / d

       x₄ = 2.6 cos 105 = -0.6729 miles

       y₄ = 2.6 sin 105 = 2,511 miles

having all the components we add

x-axis  (West-East direction)

       X = x₁ + x₂ + x₃ + x₄

       X = 1.039 -0.684 - 1.3846 - 0.6729

       X = -1.7025 miles

   

       Y = y₁ + y₂ + y₃ + y₄

       Y = -0.6 -1.879 -0.8 +2.511

       Y = -0.768

The modulus of this displacement is we use the Pythagorean theorem

      D = √ (X² + Y²)

      D = √ (1.7025² + 0.768²)

      D = 1.8677 miles

let's use trigonometry to find the direction

       tan θ = Y / X

       θ = tan⁻¹ Y / x

       θ = tan⁻¹ (0.768 / 1.7025)

       θ = 24.28º

as the two components are negative this angle is in the third quadrant

therefore in cardinal direction form is

         θ = 24.28º at South of West

4 0
3 years ago
Estimate the total number of bacteria and other prokaryotes in the biosphere of the earth. (assume the bacteria are found to a d
Fofino [41]
Since the Earth is almost spherical in shape, we are actually to find first the volume of the spherical segment at a depth of 1,000 m. The radius of the Earth is 6,371,000 meters. The volume of a spherical segment is:

V = 1/3*πh²(3r - h)
Substituting the values and making sure the units is in mm,
V = 1/3*π(1000 m * 1000 mm/1 m)²[3(6,371,000 m * 1000 mm/1 m) - (1000 m * 1000 mm/1 m)]
V = 2×10²² mm³

Thus, the total amount of bacteria is:

2×10²² mm³ * 100 bacteria/1 mm³ = 2×10²⁴ bacteria
7 0
4 years ago
Unpolarized light of intensity I0 = 950 W/m2 is incident upon two polarizers. The first has its polarizing axis vertical, and th
Ket [755]

Answer:

Intensity of the light (first polarizer) (I₁) = 425 W/m²

Intensity of the light (second polarizer) (I₂) = 75.905 W/m²

Explanation:

Given:

Unpolarized light of intensity (I₀) = 950 W/m²

θ = 65°

Find:

a. Intensity of the light (first polarizer)

b. Intensity of the light (second polarizer)

Computation:

a. Intensity of the light (first polarizer)

Intensity of the light (first polarizer) (I₁) = I₀ / 2

Intensity of the light (first polarizer) (I₁) = 950 / 2

Intensity of the light (first polarizer) (I₁) = 425 W/m²

b. Intensity of the light (second polarizer)

Intensity of the light (second polarizer) (I₂) = (I₁)cos²θ

Intensity of the light (second polarizer) (I₂) = (425)(0.1786)

Intensity of the light (second polarizer) (I₂) = 75.905 W/m²

5 0
4 years ago
Other questions:
  • Chlorophylls absorb most light in which colors of the visible range?
    9·1 answer
  • At one instant, an electron (charge = –1.6 x 10–19 C) is moving in the xy plane, the components of its velocity being vx = 5.0 x
    11·1 answer
  • PLZ HELP WILL GIVE BRAINIEST 15 POINTS!!!
    15·2 answers
  • 5. What is the angle between the incident and reflected rays when a ray of light incident
    5·1 answer
  • A spaceship departs from Earth for the star Alpha Centauri, which is 4.37 light-years away. The spaceship travels at 0.70c. 1) W
    13·1 answer
  • Calculate the parallel component of the weight of the object on the inclined plane below.
    7·1 answer
  • Define Simple harmonic motion (SHM). A body moving with SHM has an amplitude of 10 cm and a frequency of 100 Hz. Find (a) the pe
    10·1 answer
  • If we increase the driving frequency in a circuit with purely resistive load, how do the amplitudes VR and IR change?
    5·1 answer
  • A magnetic field will move-
    11·1 answer
  • help i am confused about this riddle.IF NOTHING IS FASTER THAN LIGHT HOW DID THE DARK GET THERE FIRST
    13·2 answers
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!