Answer:
1.85 J/K
Explanation:
The computation of total change in entropy is shown below:-
Change in Entropy = Sum Q ÷ T
=
= -3.12 + 4.97
= 1.85 J/K
Therefore for computing the total change in entropy we simply applied the above formula.
As we can see that there is heat entering the reservoir so it will be negative while cold reservoir will be positive else the process would be impossible.
One point will be X1,Y1 and the other will be X2,Y2. It does not matter which is which except that X1 and Y1 have to be the same point and X2 and Y2 have to be the same point. For example, let's say you were given (2,3) and (6,8). No matter which point is X1,Y1 and the other is X2,Y2, the slope will still be 5/4.
The rise is the change in y from one point to the other. The run would be the change in x from one point to the other.
Answer:
<em>a. True</em>
<em></em>
Explanation:
I'll assume the question is about magnetic latches and locks.
Magnetic door locks use an electromagnetic force to stop doors from opening, so they are ideal for security. There are two main types of electric locking devices. Locking devices can either be a fail-secure locking device that remains locked when power is lost, or a fail-safe locking device that is unlocked when de-energized. An electromagnetic lock creates a magnetic field when energized or powered up, this causes an electromagnet and armature plate to become attracted to each other strongly enough to keep a door from opening.
Answer:
AFter 3.5 s, the wagon is moving at:
Explanation:
Let's start by finding first the net force on the wagon, and from there the wagon's acceleration (using Newton's 2nd Law):
Net force = 250 N + 178 N = 428 N
Therefore, the acceleration from Newton's 2nd Law is:
So now we apply this acceleration to the kinematic expression for velocity in an object moving under constant acceleration: