1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
Lilit [14]
3 years ago
8

A proposed piping and pumping system has 20-psig static pressure, and the piping discharges to atmosphere 160 ft above the pump.

If the piping friction loss is 20 ft head, the minimum pressure rating (psi) of the piping system is most nearly:
(A) 50
(B) 100
(C) 150
(D) 250
Engineering
1 answer:
larisa86 [58]3 years ago
7 0

Answer: (B) 100

Explanation:

Given that;

Pstatic = 20 psig , hz = 160ft, hf = 20ft

Now total head will be;

T.h = hz + hf

T.h= 160 + 20

T.h = 180ft

Minimum pressure = Psatic + egh

we know that specific weight of water is 62.4 (lb/ft3)

so

P.min = (20 bf/in² ) + (62.4 b/ft³ × 180 fr

P.min = (20 bf/in² ) + ( 62.4 × 180 × 1 ft²/144 in²)

P.min = 20 + 78

P.min = 98 lbf/in²

Therefore the minimum pressure rating (psi) of the piping system is most nearly B) 100

You might be interested in
Oil with a density of 850 kg/m3 and kinematic viscosity of 0.00062 m2 /s is being discharged by a 8-mm-diameter, 40-m-long horiz
Naddik [55]

Answer:

Q = 5.06 x 10⁻⁸ m³/s

Explanation:

Given:

v=0.00062 m² /s       and ρ= 850 kg/m³  

diameter = 8 mm

length of horizontal pipe = 40 m

Dynamic viscosity =

μ =  ρv

   =850 x 0.00062

   = 0.527 kg/m·s  

The pressure at the bottom of the tank is:

P₁,gauge = ρ g h = 850 x 9.8 x 4 = 33.32 kN/m²

The laminar flow rate through a horizontal pipe is:

Q = \dfrac{\Delta P \pi D^4}{128 \mu L}

Q= \dfrac{33.32 \times 1000 \pi\times 0.008^4}{128 \times 0.527 \times 40}

Q = 5.06 x 10⁻⁸ m³/s

4 0
3 years ago
A solid cylindrical workpiece made of 304 stainless steel is 150 mm in diameter and 100 mm is high. It is reduced in height by 5
goblinko [34]

Answer:

45.3 MN

Explanation:

The forging force at the end of the stroke is given by

F = Y.π.r².[1 + (2μr/3h)]

The final height, h is given as h = 100/2

h = 50 mm

Next, we find the final radius by applying the volume constancy law

volumes before deformation = volumes after deformation

π * 75² * 2 * 100 = π * r² * 2 * 50

75² * 2 = r²

r² = 11250

r = √11250

r = 106 mm

E = In(100/50)

E = 0.69

From the graph flow, we find that Y = 1000 MPa, and thus, we apply the formula

F = Y.π.r².[1 + (2μr/3h)]

F = 1000 * 3.142 * 0.106² * [1 + (2 * 0.2 * 0.106/ 3 * 0.05)]

F = 35.3 * [1 + 0.2826]

F = 35.3 * 1.2826

F = 45.3 MN

7 0
3 years ago
Which rules of the road apply to people riding bicycles, under Illinois law? *
bulgar [2K]

Answer:

C-People biking must follow all rules and laws applicable to a motorist, with some minor exceptions​

Explanation:

People biking should ride on the right side of the right lane when safe, except to pass or make a left turn. When there is only one lane for traffic traveling in each direction and passing is permitted, the center of the street is marked with a broken yellow stripe

~Hope this helps!

4 0
3 years ago
Which statement about lean manufacturing is true when you compare it to mass production?
Len [333]
Where are the statements then bbs lol
6 0
3 years ago
Match the test to the property it measures.
Vinvika [58]

Answer:

a. Rockwell              3. hardness

b. Instron                 2. stress vs strain

c. Charpy                 1. impact strength

d. Fatigue                4. Endurance Limit

e. Brinell                  3. hardness

f. Izod                      1. impact strength

Explanation:

Izod and Charpy are the impact strength testing procedure of a material in which a heavy hammer is attached to an arm is released to impact on the test specimen. In Izod test the specimen with v-notch is held vertical with the notch facing outward while in Charpy test the specimen is supported horizontally with notch facing inward to the impacting hammer.

Instron testing system does universal testing of the material which gradually applies the load recording all the stresses and the corresponding strains until the material fails.

Fatigue is the property of a material due to which it fails under the repeated cyclic loading by the initiation and propagation of cracks. The property of a material resist failure subjected to infinite number of repeated cyclic loads below a certain stress limit.

Rockwell and Brinell are the hardness testing methods. In Rockwell test an intender ball is firstly pressed against the specimen using minor load for a certain time and then a major load is pressed against it for a certain time. After the intender is removed the depth of impression on the surface is measured while in case of Brinell hardness we apply only one load against the intender ball for a certain time and after its removal the radius of impression is measured.

7 0
3 years ago
Other questions:
  • A 6cm OD, 2cm thick copper hollow sphere [k=386W/m.C] is uniformly heated at the inner surface at a rate of 150W/m2. The outside
    6·1 answer
  • At the end of a power distribution system, a certain feeder supplies three distribution transformer, each one supplying a group
    8·1 answer
  • What can happen to you if you are in a crash and not wearing a seat belt?<br> Explain.
    13·2 answers
  • I'm really bad at measurements so I don't understand this.
    12·1 answer
  • For a brass alloy, the following engineering stresses produce the corresponding plastic engineering strains prior to necking:
    9·1 answer
  • What are the different branches of engineering involved in manufacturing a general-purpose elevator?
    6·1 answer
  • In the given circuit, V(t)=12cos(2000t+45)V, R1=R2=2Ω, L1=L2=L3=3mH and C1=250μF. You are required to find the Thevenin equivale
    7·1 answer
  • You are traveling along an interstate highway at 32.0 m/s (about 72 mph) when a truck stops suddenly in front of you. You immedi
    11·1 answer
  • Explain the underlying physical reason why when we conduct various heat treatments on 1018 steel we expect the modulus of elasti
    8·1 answer
  • The complexity of bfs and dfs
    11·1 answer
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!