1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
djverab [1.8K]
3 years ago
9

1. Fatigue equations are based solely on theoretical assumptions. Experimental data is only used to verify the theory. a. True.b

. False.2. While most steels have a well‐defined endurance limit, both aluminum and titanium do not—they will both eventually fail at even the lowest alternating stress levels. a. True.
b. False3. The mean, or midrange, stress is the average of the maximum and minimum stress in a cycle. a. True.
b. FalseThe alternating, or amplitude, stress is the stress range from peak to valley, i.e., the difference between the maximum and minimum stresses.a. True.
b. False
4. Low‐cycle fatigue is defined as less than 103 cycles and high cycle fatigue is between 103 and 106 (or 107).a. True.
b. False5. Fatigue analysis for brittle materials is better‐defined and can be more generally applied than fatigue for ductile materials. a. True.
b. False6. Torsional fatigue is handled in the same manner as bending fatigue with the appropriate modifications to the ultimate and yield strengths. a. True.
b. False7. S‐N diagrams are based on fluctuating stresses but can be modified for reversible stresses. a. True.
b. False8. The Strain‐Life method for predicting fatigue failure is more accurate than the Stress‐Life method, but is more difficult to analyze. a. True.
b. False9. The Linear‐Elastic Fracture Mechanics method is based on the assumption that initial cracks do not exist in materials, and predicts fatigue failure when a crack initiates.a. True.
b. False
Engineering
1 answer:
Rainbow [258]3 years ago
7 0

Answer:

1.  b. False

2. b. False

3.  b. False

4.  b. False

5. a. True

6. a. True

7.  b. False

8.  b. False

9. a. True

Explanation:

1. The fatigue properties of a material  are determined by series of test.

2. For most steels there is a level of fatigue limit below which a component will survive an infinite number of cycles, for aluminum and titanium a fatigue limit can not be defined, as failure will eventually occur after enough experienced cycles.

3. Although there is a cyclic stress, there are also stresses complex circumstances involving tensile to compresive and constant stress, where the solution is given into the mean stress and the stress amplitude or stress range, which is double the stress amplitude.

4. Low‐cycle fatigue is defined as few thousand cycles and high cycle fatigue is around more than 10,000 cycles.

5. The number of cycles for failure on brittle materials are less and determined compared with the ductile materials.

6.  The bending fatigue could be handled with specific load requirements  for uniform bending or axial fatigue of the same section size where the material near the surface is subjected to the  maximum stress, as in torsional fatigue, which can be performed on  axial-type specially designed machines also, using the proper fixtures if  the maximum twist required is small, in which linear motion is changed to rotational motion.

7.  A SN-Curve for a given material, is a plot displayed on logarithmic scales of the magnitude of an alternating stress in relation to the number of cycles to failure

8. The strain life method measures the strain resistance of local stresses and strains around stress concentration that controls the fatigue life of the material. It is more accurate than determining fatigue performance as the stress-life method is for long life millions of cycles in elastic stresses, but an it gets an effective stress concentration in fatigue loading.

9. Linear Elastic Fracture Mechanics (LEFM) states that the material is isotropic and linear elastic so, when the stresses near the crack surpasses the material fracture toughness, the crack grows.

You might be interested in
There are 20 forging presses in the forge shop of a small company. The shop produces batches of forgings requiring a setup time
Aleksandr-060686 [28]

Answer:

Considering the guidelines of this exercise.

The pieces produced per month are 504 000

The productivity ratio is 75%

Explanation:

To understand this answer we need to analyze the problem. First of all, we can only produce 2 batches of production by the press because we require 3 hours to set it up. So if we rest those 6 hours from the 8 of the shift we get 6, leaving 2 for an incomplete bath. So multiplying 2 batches per day of production by press we obtain 40 batches per day. So, considering we work in this factory for 21 days per month well that makes 40 x 21  making 840 then we multiply the batches for the pieces 840 x 600 obtaining 504000 pieces produced per month. To obtain the productivity ratio we need to divide the standard labor hours meaning 6 by the amount of time worked meaning 8. Obtaining 75% efficiency.

4 0
3 years ago
B1) 20 pts. The thickness of each of the two sheets to be resistance spot welded is 3.5 mm. It is desired to form a weld nugget
kap26 [50]

Answer:

minimum current level required =  8975.95 amperes

Explanation:

Given data:

diameter = 5.5 mm

length = 5.0 mm

T = 0.3

unit melting energy = 9.5 j/mm^3

electrical resistance = 140 micro ohms

thickness of each of the two sheets = 3.5mm

Determine the minimum current level required

first we calculate the volume of the weld nugget

v = \frac{\pi }{4} * D^2 * l = \frac{\pi }{4} * 5.5^2 * 5 = 118.73 mm^3

next calculate the required melting energy

= volume of weld nugget * unit melting energy

= 118.73 * 9.5 = 1127.94 joules

next find the actual required electric energy

= required melting energy / efficiency

= 1127 .94 / ( 1/3 )  = 3383.84 J

TO DETERMINE THE CURRENT LEVEL REQUIRED  use the relation below

electrical energy =  I^2 * R * T

3383.84 / R*T = I^2

3383.84 / (( 140 * 10^-6 ) * 0.3 ) = I^2

therefore  8975.95 = I ( current )

4 0
3 years ago
Random question, does anyone here use Lego, do not answer unless that is a yes
Sophie [7]

Answer:

yes i have 2 huge bins of it

Explanation:

8 0
3 years ago
Read 2 more answers
or a metal pipe used to pump tomato paste, the overall heat- transfer coefficient based on internal area is 2 W/(m2 K). The insi
igomit [66]

Answer: ok the best one would be letter s because it goes

Explanation:

467,,mm tubing should do

7 0
3 years ago
Not sure which one....
Airida [17]
I think downwards as that's how most saw's work.
4 0
3 years ago
Other questions:
  • How an AK 47 gun was works​
    14·1 answer
  • Q5. A hypothetical metal alloy has a grain diameter of 2.4 x 10-2 mm. After a heat treatment at 575°C for 500 min, the grain dia
    7·1 answer
  • Admission to an aquarium is $14 per person. There is also an IMAX theatre in the building, which charges $8 per ticket for a 3D
    8·1 answer
  • Hi, I have an assignment in which i needs to write a report on (Rationalization of electrical energy consumption) and i need cha
    6·1 answer
  • Check the answer that best describes the relationship between f(x) and x. (For example if f(x) is Θ(x) check that as your answer
    12·1 answer
  • The mechanical properties of a metal may be improved by incorporating fine particles of its oxide. Given that the moduli of elas
    5·1 answer
  • In dynamics, the friction force acting on a moving object is always a) in the same direction of its motion b) a kinetic friction
    15·1 answer
  • In an experiment, the local heat transfer over a flat plate were correlated in the form of local Nusselt number as expressed by
    5·1 answer
  • Make a sketch of a simple mechanically expanded brake and indicate the forces ​ ​ acting on the leading shoe when the brake is a
    10·1 answer
  • Using the following data, determine the percentage retained, cumulative percentage retained, and percent passing for each sieve.
    6·1 answer
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!