Answer:
R = V / I
, R = V² / P, R = P / I²
Explanation:
For this exercise let's use ohm's law
V = I R
R = V / I
Electric power is defined by
P = V I
ohm's law
I = V / R
we substitute
P = V (V / R)
P = V² / R
R = V² / P
the third way of calculation
P = (i R) I
P = R I²
R = P / I²
Answer and Explanation:
clear all; close all;
N=512;
t=(1:N)/N;
fs=1000;
f=(1:N)*fs/N;
x= sin(2*pi*200*t) + sin(2*pi*400*t);
y= sin(2*pi*200*t) + sin(2*pi*900*t);
for n = 1:20
a(n) = (2/N)*sum(x.*(cos(2*pi*n*t)))
b(n) = (2/N)*sum(x.*(sin(2*pi*n*t)))
c(n) = sqrt(a(n).^2+b(n).^2)
theta(n) =-(360/(2*pi))*atan(b(n)./a(n));
end
plot(f(1:20),c(1:20),'rd');
disp([a(1:4),b(1:4),c(1:4),theta(1:4)])
Answer:
(a) Precipitation hardening
(1) The strengthening mechanism involves the hindering of dislocation motion by precipitates/particles.
(2) The hardening/strengthening effect is not retained at elevated temperatures for this process.
(4) The strength is developed by a heat treatment.
(b) Dispersion strengthening
(1) The strengthening mechanism involves the hindering of dislocation motion by precipitates/particles.
(3) The hardening/strengthening effect is retained at elevated temperatures for this process.
(5) The strength is developed without a heat treatment.
Answer:
1028.1184 Ohms
Explanation:
<u>Given the following data;</u>
- Initial resistance, Ro = 976 Ohms
- Initial temperature, T1 = 0°C
- Final temperature, T2 = 89°C
Assuming the temperature coefficient of resistance for carbon at 0°C is equal to 0.0006 per degree Celsius.
To find determine its new resistance, we would use the mathematical expression for linear resistivity;

Substituting into the equation, we have;



