Answer:
<u>In an ionic bond , an element will have to lose or gain electrons.</u>
Explanation:
- Ionic bond, also called electrovalent bond, type of linkage formed from the electrostatic attraction between oppositely charged ions in a chemical compound.
- Such a bond forms when the valence (outermost) electrons of one atom are transferred permanently to another atom.
- <em>The atom that loses the electrons becomes a positively charged ion (cation), while the one that gains them becomes a negatively charged ion (anion).</em>
∴
- <em>The number of electrons an atom would gain or lose when forming ionic bonds cannot be zero.</em>
Answer: Looked it up but
Explanation:
When the skater lands on the track, the vertical component of his kinetic energy is converted to thermal energy. You can do experiments where there is no loss to thermal energy (only PE and KE conversions) by turning friction off and by making sure the skater doesn't leave the track.
It's angle of reflection must be 41 degrees
we know, by the first law of reflection that angle of incidence is always equal to angle of reflection..........
Explanation:
Water does expand with heat (and contract with cooling), but the amount of expansion is pretty small. So when you boil a can filled with water and seal it, the water will contract slightly as it cools. The can may kink slightly, but that will be it. Actually, most likely the only things you will be able to see is then top and bottom will be sucked in and go concave. Just like a commercial can of beans.
Now if you have a can with a little water and a big air space, things are completely different.
As the water boils, water vapour is given off. Steam. Let it boils for a minute just to make sure (nearly) all the air is expelled and the can is filled with steam.
Now when you put the lid on and cool the can, that steam condenses back to water, and goes from filling the can to a few drops of water. The can is now filled (if that is the right word) with a near vacuum, The air pressure, 15 lbs/square inch, will be pressing on every surface of the can, with nothing inside the can to resist it.
The can will crumple before your eyes.
The wave-particle dual nature of light has been documented and tested many times.
Choice A