Answer:
Vertical Height = 0.784 meter, Speed back at starting point = 10 m/s
Explanation:
Given Data:
V is the overall velocity vector, and are its initial vertical and horizontal components
To find:
Max Height achieved
Calculation:
1) Using the equation of motion, we know
2) In terms of gravity height and the vertical component of Velocity .
3) As as at maximum height the vertical component of velocity is zero maximum height achieved
putting values
4)
5) As for the speed when it reaches back its starting point, it will have a speed similar to its launching speed, the reason being the absence of air friction (Air drag)
Answer:
+1.46×10¯⁶ C
Explanation:
From the question given above, the following data were obtained:
Charge 1 (q₁) = +26.3 μC = +26.3×10¯⁶ C
Force (F) = 0.615 N
Distance apart (r) = 0.750 m
Electrical constant (K) = 9×10⁹ Nm²/C²
Charge 2 (q₂) =?
The value of the second charge can be obtained as follow:
F = Kq₁q₂ / r²
0.615 = 9×10⁹ × 26.3×10¯⁶ × q₂ / 0.750²
0.615 = 236700 × q₂ / 0.5625
Cross multiply
236700 × q₂ = 0.615 × 0.5625
Divide both side by 236700
q₂ = (0.615 × 0.5625) / 236700
q₂ = +1.46×10¯⁶ C
NOTE: The force between them is repulsive as stated from the question. This means that both charge has the same sign. Since the first charge has a positive sign, the second charge also has a positive sign. Thus, the value of the second charge is +1.46×10¯⁶ C
The one that help create radio waves is :
Changing electric and magnetic fields applied at right angles
Radio waves are transverse wave, which means that the oscillations occurring perpendicular to the direction of energy transfer
hope this helps
During cytokinesis, the cytoplasm of the cell is divided in half, and the cell membrane grows to enclose each cell, forming two separate cells as a result. The end result of mitosis and cytokinesis is two genetically identical cells where only one cell existed before.