Answer:
121 K
Explanation:
Step 1: Given data
- Initial volume (V₁): 79.5 mL
- Initial temperature (T₁): -1.4°C
- Final volume (V₂): 35.3 mL
Step 2: Convert "-1.4°C" to Kelvin
We will use the following expression.
K = °C + 273.15 = -1.4°C + 273.15 = 271.8 K
Step 3: Calculate the final temperature of the gas (T₂)
Assuming ideal behavior and constant pressure, we can calculate the final temperature of the gas using Charles' law.
V₁/T₁ = V₂/T₂
T₂ = V₂ × T₁/V₁
T₂ = 35.3 mL × 271.8 K/79.5 mL = 121 K
Answer:
decrease temperature of the oxygen
Explanation:
Answer:
We need 113000 J of heat (option 2 is correct)
Explanation:
Step 1: Data given
Mass of liquid water = 50.0 grams
ΔHVap = 2260 J/g
Temperature = 100 °C
ΔHVap = The amount of heat released to change phase of a liquid water to steam = 2260 J/g
Step 2: Calculate the heat needed
Q =m* ΔHVap
⇒with Q = the amount of heat needed = TO BE DETERMINED
⇒with m = the mass of water = 50.0 grams
⇒with ΔHVap = 2260 J/g
Q = 50.0 grams * 2260 J
Q = 113000 J
We need 113000 J of heat (option 2 is correct)
A. Outer energy level electrons are shared.
In electrovalent combination, after donating their valence electrons, metallic particles become positively charged; non metallic particles become negatively charged after acquiring extra electrons.
The electrons involved reside in the outermost shells of the atoms.
PeAcE.