1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
NeTakaya
3 years ago
11

A standard solution of FeSCN2+ is prepared by combining 9.0 mL of 0.20 M Fe(NO3)3 with 1.0 mL of 0.0020 M KSCN . The standard so

lution had an absorbance of 0.480 . Fe3+(aq)+SCN−(aq)↽−−⇀FeSCN2+(aq) A trial solution was made in a similar manner, but with a more dilute Fe(NO3)3 reagent. The initial SCN− concentration, immediately after mixing, was 0.00050 M . This trial solution had absorbance of 0.220 . What is the equilibrium concentration of SCN− in the trial solution?
Chemistry
1 answer:
Xelga [282]3 years ago
5 0

Answer : The equilibrium concentration of SCN^- in the trial solution is 4.58\times 10^{-8}M

Explanation :

First we have to calculate the initial moles of Fe^{3+} and SCN^-.

\text{Moles of }Fe^{3+}=\text{Concentration of }Fe^{3+}\times \text{Volume of solution}

\text{Moles of }Fe^{3+}=0.20M\times 9.0mL=1.8mmol

and,

\text{Moles of }SCN^-=\text{Concentration of }SCN^-\times \text{Volume of solution}

\text{Moles of }SCN^-=0.0020M\times 1.0mL=0.0020mmol

The given balanced chemical reaction is,

Fe^{3+}(aq)+SCN^-(aq)\rightleftharpoons FeSCN^{2+}(aq)

Since 1 mole of Fe^{3+} reacts with 1 mole of SCN^- to give 1 mole of FeSCN^{2+}

The limiting reagent is, SCN^-

So, the number of moles of FeSCN^{2+} = 0.0020 mmole

Now we have to calculate the concentration of FeSCN^{2+}.

\text{Concentration of }FeSCN^{2+}=\frac{0.0020mmol}{9.0mL+1.0mL}=0.00020M

Using Beer-Lambert's law :

A=\epsilon \times C\times l

where,

A = absorbance of solution

C = concentration of solution

l = path length

\epsilon = molar absorptivity coefficient

\epsilon and l are same for stock solution and dilute solution. So,

\epsilon l=\frac{A}{C}=\frac{0.480}{0.00020M}=2400M^{-1}

For trial solution:

The equilibrium concentration of SCN^- is,

[SCN^-]_{eqm}=[SCN^-]_{initial}-[FeSCN^{2+}]

[SCN^-]_{initial} = 0.00050 M

Now calculate the [FeSCN^{2+}].

C=\frac{A}{\epsilon l}=\frac{0.220}{2400M^{-1}}=9.17\times 10^{-5}M

Now calculate the concentration of SCN^-.

[SCN^-]_{eqm}=[SCN^-]_{initial}-[FeSCN^{2+}]

[SCN^-]_{eqm}=(0.00050M)-(9.17\times 10^{-5}M)

[SCN^-]_{eqm}=4.58\times 10^{-8}M

Therefore, the equilibrium concentration of SCN^- in the trial solution is 4.58\times 10^{-8}M

You might be interested in
A kitchen worker at a local hospital was filling salt shakers. For those patients on a sodium restricted diet due to high blood
e-lub [12.9K]

Answer:

i dont know eitheir

Explanation:

pls let me know

5 0
2 years ago
Why is alchemy not considered a science
Dima020 [189]
That is because Alchemy is not based on real research and facts, but rather on magic and occultism. Sure, many things in it have been used as basics for some chemistry, but most is false and incorrect.
6 0
3 years ago
Calculate the number of moles and the mass of the solute in each of the following solutions:
frosja888 [35]

<u>Answer:</u>

<u>For a:</u> The number of moles of KI are 2.7\times 10^{-5} and mass is 4.482\times 10^{-3}g

<u>For b:</u> The number of moles of sulfuric acid are 1.65\times 10^{-5} and mass is 1.617\times 10^{-3}g

<u>For c:</u> The number of moles of potassium chromate are 2.84\times 10^{-2} and mass is 5.51 g.

<u>For d:</u> The number of moles of ammonium sulfate are 39.018 moles and mass is 5155.84 grams.

<u>Explanation:</u>

To calculate the molarity of solution, we use the equation:

\text{Molarity of the solution}=\frac{\text{Moles of solute}}{\text{Volume of solution (in L)}}    .....(1)

To calculate the number of moles of a substance, we use the equation:

\text{Number of moles}=\frac{\text{Given mass}}{\text{Molar mass}}     .....(2)

  • <u>For a:</u>

Molarity of KI = 8.23\times 10^{-5}M

Volume of solution = 325 mL = 0.325 L     (Conversion factor: 1 L = 1000 mL)

Putting values in equation 1, we get:

8.25\times 10^{-5}mol/L=\frac{\text{Moles of KI}}{0.325L}\\\\\text{Moles of KI}=2.7\times 10^{-5}mol

Now, using equation 2, we get:

Moles of KI = 2.7\times 10^{-5}mol

Molar mass of KI = 166 g/mol

Putting values in equation 2, we get:

2.7\times 10^{-5}mol=\frac{\text{Mass of KI}}{166g/mol}\\\\\text{Mass of KI}=4.482\times 10^{-3}g

Hence, the number of moles of KI are 2.7\times 10^{-5} and mass is 4.482\times 10^{-3}g

  • <u>For b:</u>

Molarity of sulfuric acid = 22\times 10^{-5}M

Volume of solution = 75 mL = 0.075 L

Putting values in equation 1, we get:

22\times 10^{-5}mol/L=\frac{\text{Moles of sulfuric acid}}{0.075L}\\\\\text{Moles of }H_2SO_4=1.65\times 10^{-5}mol

Now, using equation 2, we get:

Moles of sulfuric acid = 1.65\times 10^{-5}mol

Molar mass of sulfuric acid = 98 g/mol

Putting values in equation 2, we get:

1.65\times 10^{-5}mol=\frac{\text{Mass of }H_2SO_4}{98g/mol}\\\\\text{Mass of }H_2SO_4=1.617\times 10^{-3}g

Hence, the number of moles of sulfuric acid are 1.65\times 10^{-5} and mass is 1.617\times 10^{-3}g

  • <u>For c:</u>

Molarity of potassium chromate = 0.1135M

Volume of solution = 0.250 L

Putting values in equation 1, we get:

0.1135mol/L=\frac{\text{Moles of }K_2CrO_4}{0.250L}\\\\\text{Moles of }K_2CrO_4=2.84\times 10^{-2}mol

Now, using equation 2, we get:

Moles of potassium chromate = 2.84\times 10^{-2}mol

Molar mass of potassium chromate = 194.2 g/mol

Putting values in equation 2, we get:

2.84\times 10^{-2}mol=\frac{\text{Mass of }K_2CrO_4}{194.2g/mol}\\\\\text{Mass of }K_2CrO_4=5.51g

Hence, the number of moles of potassium chromate are 2.84\times 10^{-2} and mass is 5.51 g.

  • <u>For d:</u>

Molarity of ammonium sulfate = 3.716 M

Volume of solution = 10.5 L

Putting values in equation 1, we get:

3.716mol/L=\frac{\text{Moles of }(NH_4)_2SO_4}{10.5L}\\\\\text{Moles of }(NH_4)_2SO_4=39.018mol

Now, using equation 2, we get:

Moles of ammonium sulfate = 39.018 mol

Molar mass of ammonium sulfate = 132.14 g/mol

Putting values in equation 2, we get:

39.018mol=\frac{\text{Mass of }(NH_4)_2SO_4}{132.14g/mol}\\\\\text{Mass of }(NH_4)_2SO_4=5155.84g

Hence, the number of moles of ammonium sulfate are 39.018 moles and mass is 5155.84 grams.

3 0
3 years ago
In 1911, Ernest Rutherford tested the atomic model existing at the time by shooting a beam of alpha particles (42He, helium nucl
STatiana [176]

Answer:

At the time of Rutherford's experiment, the accepted model for the atom was the Thomson plum-pudding model of the atom, in which the atom consists of a "sphere" of positive charge distributed all over the sphere, with tiny negative particles (the electrons) inside this sphere.

In his experiment, Rutherford shot alpha particles towards a very thin sheet of gold foil. He observed the following things:

1- Most of the alpha particles went undeflected, but

2- Some of them were scattered at very large angles

3- A few of them were even reflected back to their original directions

Observations 2) and 3) were incompatible with Thomson model of the atom: in fact, if this model was true, all the alpha particle should have gone undeflected, or scattered at very small angles. Instead, due to observations 2) and 3), it was clear that:

- The positive charge of the atom was all concentred in a tiny nucleus

- Most of the mass of the atom was also concentrated in the nucleus

So, Rutherford experiment lead to a change in the atomic model of the atom, as it was clear that the plum-pudding model was no longer adequate to describe the results of Rutherford's experiment.

5 0
3 years ago
Calculate the pressure of 2 mol of a gas at 300 K in 8 L container.
Sergio039 [100]

Answer:

4800

Explanation:

using my Cal ex to solve the question

calculation goes like this

2*300*8=4800

3 0
3 years ago
Other questions:
  • I have no clue what to do, HELP!!
    8·1 answer
  • The molar concentration (M) of a solution prepared by dissolving 0.2362g of Cr(NO3)3 in a 50-mL volumetric flask is 0.01985M, wh
    13·1 answer
  • In which group of the periodic table do you find alkali metals?<br><br>A. 8A<br>B.2A<br>C.1A<br>D.7A
    11·2 answers
  • 7. Do you have any reservations about taking this course? Explain. How can I help?
    15·1 answer
  • Which of the following statements is false? A) Entropy increases with the number of microstates of the system. B) The total entr
    6·1 answer
  • Difference between Atom and Molecule <br> In three points
    11·2 answers
  • Draw the correct Lewis structure of this molecule by placing atoms on the canvas and connecting them with bonds. Include all hyd
    8·1 answer
  • How many moles are in 3.4 x 10^23 molecules of carbon dioxide CO2
    7·1 answer
  • Given the following list of densities, which materials would float in a molten vat of lead provided that they do not themselves
    7·1 answer
  • In an experiment, a solution required 30. 05 g of nacl, 50. 0 g of , and 0. 4006 g of mgso4. Using the correct number of signifi
    11·1 answer
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!