Answer: polar molecule.
Explanation:
The boiling point is the temperature at which the vapor pressure of a liquid equals the external pressure surrounding the liquid. The boiling point is dependent on the type of forces present.
Iodine monochloride (ICl) is a polar molecule due to the difference in electronegativities of iodine and chlorine. Thus the molecules are bonded by strong dipole dipole forces. Thus a higher temperature is needed to generate enough vapor pressure.
Bromine
is a non polar molecule as there is no electronegativity difference between two bromine atoms. The molecules are bonded by weak vanderwaal forces and thus has low boiling point.
Complete question is;
A drop of water has a volume of approximately 7 × 10⁻² ml. How many water molecules does it contain? The density of water is 1.0 g/cm³.
This question will require us to first find the number of moles and then use avogadro's number to get the number of water molecules.
<em><u>Number of water molecules = 2.34 × 10²¹ molecules</u></em>
We are given;
Volume of water; V = 7 × 10⁻² ml
Density of water; ρ = 1 g/cm³ = 1 g/ml
Formula for mass is; m = ρV
m = 1 × 7 × 10⁻²
m = 7 × 10⁻² g
from online calculation, molar mass of water = 18.01 g/mol
Number of moles(n) = mass/molar mass
Thus;
n = (7 × 10⁻²)/18.01
n = 3.887 × 10⁻³ mol
from avogadro's number, we know that;
1 mol = 6.022 × 10²³ molecules
Thus,3.887 × 10⁻³ mol will give; 6.022 × 10²³ × 3.887 × 10⁻³ = 2.34 × 10²¹ molecules
Read more at; brainly.in/question/17990661
I believe it’s a positive charge
The reaction is
FeO + Fe3O4 + 1/2 O2---> 2Fe2O3
Thus as shown in the balanced equation two moles of Fe2O3 are formed when 0.5 moles of O2 reacted with mixture of FeO and Fe3O4
moles of Fe2O3 = MAss / Molar mass = 4.141 / 159.69 = 0.0259 moles
So moles of O2 needed = 0.5 X 0.0259 = 0.01295
Mass of O2 = moles X molar mass = 0.01295 X 32 = 0.4144 grams