Answer:
the average force exerted by seatbelts on the passenger is 5625 N.
Explanation:
Given;
initial velocity of the car, u = 50 m/s
distance traveled by the car, s = 20 m
final velocity of the after coming to rest, v = 0
mass of the passenger, m = 90 kg
Determine the acceleration of the car as it hit the pile of dirt;
v² = u² + 2as
0 = 50² + (2 x 20)a
0 = 2500 + 40a
40a = -2500
a = -2500/40
a = -62.5 m/s²
The deceleration of the car is 62.5 m/s²
The force exerted on the passenger by the backward action of the car is calculated as follows;
F = ma
F = 90 x 62.5
F = 5625 N
Therefore, the average force exerted by seatbelts on the passenger is 5625 N.
Options are. Zenith, Great circle, Equinox, or Meridan
Answer:
The mass of the beam is 0.074 kg
Explanation:
Given;
length of the uniform bar, = 1m = 100 cm
Set up this system with the given mass and support;
0-----------------33cm-----------------------------------100cm
↓ Δ ↓
0.15kg m
Where;
m is mass of the uniform bar
Apply the principle of moment to determine the value of "m"
sum of anticlockwise moment = sum of clockwise moment
0.15kg(33 - 0) = m(100 - 33)
0.15(33) = m(67)

Therefore, the mass of the beam is 0.074 kg
Answer:
20 m/s
30 m/s
Explanation:
Given:
v₀ = -10 m/s
a = -9.8 m/s²
When t = 1 s:
v = v₀ + at
v = (-10 m/s) + (-9.8 m/s²) (1 s)
v = -19.8 m/s
When t = 2 s:
v = v₀ + at
v = (-10 m/s) + (-9.8 m/s²) (2 s)
v = -29.6 m/s
Rounded to one significant figures, the speed of the ball at 1 s and 2 s is 20 m/s and 30 m/s, respectively.
Advances in technology used to study and observe atoms lead to the discovery of electrons, protons, nuetrons, and the quarq