The difference between the two is, well for one
Spectrum: The entire range that the "<em>waves" </em>could be such, as visible light, x-ray's and so on.
Waves: These are different because they aren't telling you or showing the entire spectrum just which they length that they are.
<em>It may confuse you but it makes sense to me (Sorry)</em>
Answer:
c = 1 / √(ε₀*μ₀)
Explanation:
The speed of the electromagnetic wave in free space is given in terms of the permeability and the permittivity of free space by
c = 1 / √(ε₀*μ₀)
where the permeability of free space (μ₀) is a physical constant used often in electromagnetism and ε₀ is the permittivity of free space (a physical constant).
Answer:
The shortest de Broglie wavelength for the electrons that are produced as photoelectrons is 0.81 nm
Explanation:
Given;
wavelength of ultraviolet light, λ = 270 nm
work function of the metal, φ = 2.3 eV = 2.3 x 1.602 x 10⁻¹⁹ J = 3.685 x 10⁻¹⁹ J
The energy of the ultraviolet light is given by;

The energy of the incident light is related to kinetic energy of the electron and work function of the metal by the following equation;
E = φ + K.E
K.E = E - φ
K.E = (7.362 x 10⁻¹⁹ J) - (3.685 x 10⁻¹⁹ J )
K.E = 3.677 x 10⁻¹⁹ J
K.E = ¹/₂mv²
mv² = 2K.E
velocity of the electron is given by;

the shortest de Broglie wavelength for the electrons is given by;

Therefore, the shortest de Broglie wavelength for the electrons that are produced as photoelectrons is 0.81 nm
The motivation behind why the vertical stature of the stairs is the main thing measured is that it uncovers to us how much gravity is up against the individual and their weight, so we require this data to decide how much vitality and power we have to get up the stairs.
Answer:

Option A is correct
Explanation:
Let's check the options:
A: The electron has a negative charge and is found outside of the nucleus.
Yeah! It's TRUE . An electron is a <u>negatively</u><u> </u><u>charged</u><u> </u><u>particle</u><u> </u><u>and</u><u> </u><u>is</u><u> </u><u>located</u><u> </u><u>outside</u><u> </u><u>the</u><u> </u><u>nucleus</u><u> </u><u>of</u><u> </u><u>an</u><u> </u><u>atom.</u>
B : The neutron has a negative charge and is found in the nucleus.
No! It's FALSE . A neutron carries <u>no </u><u>charge</u>. i.e it is a neutral particle and found inside the nucleus.
C : The proton has no charge and is found in the nucleus.
No! It's FALSE.A proton is a <u>positively</u><u> </u><u>charged</u><u> </u><u>particle</u> present inside nucleus of an atom.
D : The neutron has no charge and is found outside of the nucleus.
I agree that the neutron has no charge. But it is found <u>inside</u> the nucleus not outside . So, this statement is FALSE .
Hence, we found our answer! :D
A. The electron has a negative charge and is found outside of the nucleus is the correct statement about an atom.
Hope I helped!
Best regards! :D
~