Answer:
r = 6.4 cm
Explanation:
F = GMm/r²
r = √(GMm/F)
r = √((6.674e-11)(6.2e5)(13e3)/130)
r = 0.06432... m
Those are some high density materials!
By definition, the density of an object is given by:

Where,
M: mass of the object
V: volume of the object
Since the mass and volume of an object are numerical values greater than zero, then it follows that:

It is important to respect the units of each measure.
For this case we can use the grams for the mass and cubic centimeters for the volume.
Answer:
A possible value for density is given by:

1) The correct answer is
<span>C) The particles are not able to move out of their positions relative to one another, but do have small vibrational movements.
In solids, in fact, particles are bound together so they cannot move freely. However, they can move around their fixed position with small vibrational movements, whose intensity depends on the temperature of the substance (the higher the temperature, the more intense the vibrations). For this reason, we say that matter moves also in solid state.
2) The correct answer is
</span><span>A) increase the concentration of both solutions
In fact, when we increase the concentration of both solutions, we increase the number of particles that react in both solutions; as a result, the speed of the reaction will increase.
3) The correct answer is
</span><span>C) gas → liquid → solid
In gases, in fact, particles are basically free to move, so the intermolecular forces of attraction are almost negligible. In liquids, particles are still able to move, however the intermolecular forces of attraction are stronger than in gases. Finally, in solids, particles are bound together, so they are not free to move and the intermolecular forces of attraction are very strong. </span>
Answer:
a) 
b) a = 5.59 m/s²
Explanation:
given,
total distance traveled by the car to stop is 56.9 m when speed of vehicle is 80 km/h or 80 × 0.278 = 22.24 m/s
total distance traveled by the car to stop is 25.7 m when speed of vehicle is 50.7 km/h or 50.7 × 0.278 = 14.09 m/s
using stopping distance formula
................(1)
..............(2)
on solving both the equation we get


a = 5.59 m/s²
now reaction time calculation

