Answer:
The answer is "c,d,e, and g".
Explanation:
The correct choices can be defined as follows:
- Higher-frequency microwaves aren't used in any of these systems.
- Infrared waves aren't seen in each of these technologies.
- Its shortest wavelength of all of the technologies listed is the above radiation generated by certain wireless networks.
- These devices all produce waves of wavelengths ranging from 0.10 to 10.0 cm.
A transistor is a semiconductor device used to amplify or switch electronic signals and electrical power. It is composed of semiconductor material usually with at least three terminals for connection to an external circuit. A voltage or current applied to one pair of the transistor's terminals changes the current through another pair of terminals. Because the controlled (output) power can be higher than the controlling (input) power, a transistor can amplify a signal. Today, some transistors are packaged individually, but many more are found embedded in integrated circuits.
Some of the earliest work on semiconductor amplifiers emerged from Eastern Europe. In 1922-23 Russian engineer Oleg Losev of the Nizhegorod Radio Laboratory, Leningrad, found that a special mode of operation in a point-contact zincite (ZnO) crystal diode supported signal amplification up to 5 MHz. Although Losev experimented with the material in radio circuits for years, he died in the 1942 Siege of Leningrad and was unable to advocate for his place in history. His work is largely unknown.
Austro-Hungarian physicist, Julius E. Lilienfeld, moved to the US and in 1926 filed a patent for a “Method and Apparatus for Controlling Electric Currents” in which he described a three-electrode amplifying device using copper-sulfide semiconductor material. Lilienfeld is credited with inventing the electrolytic capacitor but there is no evidence that he built a working amplifier. His patent, however, had sufficient resemblance to the later field effect transistor to deny future patent applications for that structure.
<span>German scientists also contributed to this early research. While working at Cambridge University, England in 1934, German electrical engineer and inventor Oskar Heil filed a patent on controlling current flow in a semiconductor via capacitive coupling at an electrode – essentially a field-effect transistor. And in 1938, Robert Pohl and Rudolf Hilsch experimented on potassium-bromide crystals with three electrodes at Gottingen University. They reported amplification of low-frequency (about 1 Hz) signals. None of this research led to any applications but Heil is remembered in audiophile circles today for his air motion transformer used in high fidelity speakers.</span>
The attractive force between all matter in the universe is gravity.
Acceleration is a change in *speed* over time. In this case, the speed of the car increased by 90 km/hr in 6 s, giving it a rate of 90 km/hr/6s, or 15 km/hr/s. We’re asked for the acceleration in m/s^2, though, so we’ll need to do a few conversions to get our units straight.
There are 1000 m in 1 km, 60 min, or 60 * 60 = 3600 s in 1 hr, so we can change our rate to:
(15 x 1000)m/3600s/s, or (15 x 1000)m/3600 s^2
We can reduce this to:
(15 x 10)m/36 s^2 = 150 m/36 s^2
Which, dividing numerator and denominator by 36, gets us a final answer of roughly 4.17 m/s^2
Mass of gold m₁ = 47 g
Initial temperature of gold T₁ = 99 C
Specific heat of gold C₁ = 0.129 J/gC
final temperature T₂ = 38 C
Heat needed by the gold to cool down
Q =m₁ * C₁* ( T₁ - T₂)
Q = (47)(0.129)(99-38)
Q = 369.843 J
This heat will be given by the water
we need to find out mass of water m₂
and initial temperature of water is T₃ = 25 C
Specific heat of water C₂ = 4.184 J/gC
Q = m₂*C₂*(T₂ - T₃)
369.843 = m₂(4.184)(38-25)
m₂ = 6.8 g