Answer:
(a) 6650246.305 N/C
(b) 24150268.34 N/C
(c) 6408227.848 N/C
(d) 665024.6305 N/C
Explanation:
Given:
Radius of the ring (r) = 10.0 cm = 0.10 m [1 cm = 0.01 m]
Total charge of the ring (Q) = 75.0 μC =
[1 μC = 10⁻⁶ C]
Electric field on the axis of the ring of radius 'r' at a distance of 'x' from the center of the ring is given as:

Plug in the given values for each point and solve.
(a)
Given:
, 
Electric field is given as:

(b)
Given:
, 
Electric field is given as:

(c)
Given:
, 
Electric field is given as:

(d)
Given:
, 
Electric field is given as:
Answer:
10000 J or 10 KJ
Explanation:
power = workdone/time taken
400 = workdone/25
workdone = 400 * 25
=10000 J
Answer:
Explanation:
Let c be the circumference and r be the radius
c = 2πr , r = c / 2π , area A = π r² = π (c/2π )² = (1/4π) x c²
flux (ψ) = BA = 1 X 1/4π X c²
dψ/dt = 1/4π x 2c dc/dt =1/2π x c x dc/dt
at t = 8 s
c = 161 - 13 x 8 = 57 cm , dc/dt = 13 cm/s
e = dψ/dt = (1 / 2π )x 57 x 13 x 10⁻⁴ = 118 x 10⁻⁴ V.