The answer is B: chronological order
-58 °C
The melting point is the same as the freezing point.
Answer:
The rate of disappearance of C₂H₆O = 2.46 mol/min
Explanation:
The equation of the reaction is given below:
2 K₂Cr₂O₇ + 8 H₂SO₄ + 3 C₂H₆O → 2 Cr₂(SO₄)₃ + 2 K₂SO₄ + 11 H₂O
From the equation of the reaction, 3 moles of C₂H₆O is used when 2 moles of Cr₂(SO₄)₃ are produced, therefore, the mole ratio of C₂H₆O to Cr₂(SO₄)₃ is 3:2.
The rate of appearance of Cr₂(SO₄)₃ in that particular moment is given 1.64 mol/min. This would than means that C₂H₆O must be used up at a rate which is approximately equal to their mole ratios. Thus, the rate of of the disappearance of C₂H₆O can be calculated from the mole ratio of Cr₂(SO₄)₃ and C₂H₆O.
Rate of disappearance of C₂H₆O = 1.64 mol/min of Cr₂(SO₄)₃ * 3 moles of C₂H₆O / 2 moles of Cr₂(SO₄)₃
Rate of disappearance of C₂H₆O = 2.46 mol/min of C₂H₆O
Therefore, the rate of disappearance of C₂H₆O = 2.46 mol/min
Answer:
The correct answer is option B.
Explanation:

Moles of
= 40 mol
Moles of NaOH = 48 mol
According to reaction, 3 moles of NaOH reacts with 2 moles 
Then ,48 moles of NaOH will reacts with:
of 
Then ,40 moles of
will reacts with:
of NaOH
As we can see that 48 moles of sodium will completey react with 32 moles of nitrogen tribromide.
Moles left after reaction = 40 mol - 32 mol = 8 mol
Hence, the
is an excessive reagent.
Answers:
Density = 0.8 g/mol.
Given data:
v = 25 ml
m = 20 g
δ = ?
Solution:
Formula for calculating density is given as,
Density = Mass / Volume
putting values
Density = 20.0 g / 25 ml
Density = 0.8 g/mol.