The number of lone pairs that are most likely found on the central atom is zero. There are no lone pairs found on the central atom.
To calculate the mean, you add up all of the data values, and then divide that sum by the *number* of values.
For instance, if you wanted to find the mean score at a home run derby, and you’re given the following numbers for home runs scored by each player:
5, 4, 6, 5, 3, 1
You could calculate the mean by adding all of the score up
5 + 4 + 6 + 5 + 3 + 1 = 24
And dividing by the number of hitters (in this case, 6)
24 / 6 = 4
So the *mean score* of the home run derby would be 4.
I'm sure that to calculate the freezing point depression <span>subtract</span> solution's freezing point and the freezing point of it's pure solvent. According to the formula.
Answer: 5.747 * 10^14 Hz
Explanation:
Convert 522nm to m = 522 * 10^-9 m (since 1nm=10^-9m)
If c = wavelength * frequency, where c is the speed of light (3.0 * 10^8 m/s), then you can manipulate the equation to solve for frequency (f).
f = c / wavelength
Plug in the given numbers:
f = (3.0 * 10^8) / (10^-9)
f = 5.747 * 10^14 Hz
Answer:
C.Melt both cubes and look for a broader range of melting temperatures. The one that melts over a broader range of temperatures is the amorphous solid.
Explanation:
Amorphous solids is one that do not have a fixed melting points but melt over a wide range of temperature due to the irregular shape hence its name. Contrariwise crystalline solids, have a fixed and sharp melting point.
This comes in handy to solve the riddle. We can characterise the pair with the melting point property.