Answer:
0.6257 M is the molarity of solution that is 5.50 percentage by mass oxalic acid.
Explanation:
Mass percentage of oxalic acid = 5.50%
This means that in 100 grams of solution there are 5.50 grams of oxalic acid.
Mass of solution , m = 100
Volume of the solution = V
Density of the solution = d = 1.024 g/mL

V = 97.66 mL = 0.09766 L
(1 mL = 0.001 L)
Moles of oxalic acid = 

The molarity of the solution :

0.6257 M is the molarity of solution that is 5.50 percentage by mass oxalic acid.
Answer:
no it will have no charge...it would be electrically neutral! because the number of protons and electrons are equal!
Answer:
Loss of biodiversity in the wetlands.
Explanation: Pollution can be defined as the emission of toxic, poisonous and harmful chemical substances which are capable of causing environmental degradation and contamination.
Nitrogen pollution enters Earth’s freshwater resources from a variety of human activities, including the use of fertilizers and pesticides in agriculture. This nitrogen pollution has a negative effect on plants and animals living in fresh water. Certain wetland plants, however, are able to purify the water and restore it to its non-polluted state.
Hence, what would most likely increase the negative effects of nitrogen pollution is a loss of biodiversity in the wetlands i.e the various species of animal and plants.
100.133 degree celsius is the boiling point of the solution formed when 15.2 grams of CaCl2 dissolves in 57.0 g of water.
Explanation:
Balanced eaquation for the reaction
CaCl2 + 2H20 ⇒ Ca(OH)2 + HCl
given:
mass of CaCl2 = 15.2 grams
mass of the solution = 57 grams
Kb (molal elevation constant) = 0.512 c/m
i = vont hoff factor is 1 as 1 mole of the substance is given as product.
Molality is calculated as:
molality = 
= 
= 0.26 M
Boiling point is calculated as:
ΔT = i x Kb x M
= 1 x 0.512 x 0.26
= 0.133 degrees
The boiling point of the solution will be:
100 degrees + 0.133 degrees (100 degrees is the boiling point of water)
= 100.133 degree celcius is the boiling point of mixture formed.
Answer:
They all can, but HCl would be the strongest conductors because they are strong acids/bases, meaning their ions dissociate at a faster rate in aqueous solution.