Answer:
18.2145 meters
Explanation:
Using the conservation of momentum, we have that:

m1 = m1' is the mass of the astronaut, m2=m2' is the mass of the satellite, v1 and v2 are the inicial speed of the astronaut and the satellite (v1 = v2 = 0), and v1' and v2' are the final speed of the astronaut and the satellite. Then we have that:


The negative sign of this speed just indicates the direction the astronaut goes, which is the opposite direction of the satellite.
If the astronaut takes 7.5 seconds to come into contact with the shuttle, their initial distance is:

Here is the answer of the given problem above.
Use this formula: <span>P = FV = ma*at = ma^2 t
</span><span>Substitute the values, and therefore, we got m(a0)^2t = m(x)^2 (2t)
then, solve for x which is the acceleration at 2t.
</span>The <span>answer would be a0/sqrt(2).
Hope this answers your question. Thanks for posting.
</span>
Answer:
As the tines of the tuning fork vibrate at their own natural frequency, they created sound waves that impinge upon the opening of the resonance tube. These impinging sound waves produced by the tuning fork force air inside of the resonance tube to vibrate at the same frequency.
Here i state the conservation of energy rule and use that to justify my answer. I showed how to manipulate percentages to get the final answer of 11000J (2sf). Hope I'm right xx
Answer:
W = 3.1 N
Explanation:
moments about any convenient point will sum to zero.
I choose summing about the knife edge mark and will assume the ruler of weight W is of uniform construction.
I will assume the ruler weight makes a positive moment
W[55 - 50) - 0.040(9.8)[ 95 - 55] = 0
5W = 15.68
W = 3.136