-- As she lands on the air mattress, her momentum is (m v)
Momentum = (60 kg) (5 m/s down) = 300 kg-m/s down
-- As she leaves it after the bounce,
Momentum = (60 kg) (1 m/s up) = 60 kg-m/s up
-- The impulse (change in momentum) is
Change = (60 kg-m/s up) - (300 kg-m/s down)
Magnitude of the change = <em>360 km-m/s </em>
The direction of the change is <em>up /\ </em>.
Explanation:
1st- states that when two bodies interact, they apply forces to one another that are equal in magnitude and opposite in direction.
2nd- states that the time rate of change of the momentum of a body is equal in both magnitude and direction to the force imposed on it. (most important law)
3rd- states that when two bodies interact, they apply forces to one another that are equal in magnitude and opposite in direction. (law of action/reaction)
Well you have to minus the 4.5 to 5.2 and the answer to that would be -11.5 and calculated that to be 4.5
Answer:
1. A force is a push or pull upon an object resulting from the object's interaction with another object.
Explanation:
Answer:
Pemain A
Explanation:
Mengingat data berikut;
Kecepatan pemain A = 12 m/s
Kecepatan pemain B = 36 km/h
Untuk menentukan siapa pelari tercepat di antara dua pemain;
Pertama-tama, kita harus mengubah kecepatan menjadi satuan standar pengukuran yang sama.
Jadi, mari kita gunakan pengukuran umum meter per detik.
Konversi:
36 km/h = (36 * 1000)/(60 * 60)
36 km/h = 36000/3600
36 km/h = 10 m/s
Kecepatan pemain B = 10 m/s
Oleh karena itu, dibandingkan dengan kecepatan pemain A; pemain A lebih cepat.