Answer: find the answer in the explanation
Explanation:
The capillarity of water molecules is different from the mercury molecules.
What is capillarity ?
This is the tendency of a liquid substance to rise in a capillary tube.
Molecules water rises up in a harrow tubes because of the force of adhesion between the water molecules and the tube molecules is greater than the force of cohesion between the water molecules. This helps water to wet the tube and rise. While mercury which is also a liquid falls in a narrow tubes to level below the outside surface because the force of cohesion between the mercury molecules is greater than the force of adhesion between the mercury molecules and the tube molecules. Mercury does not wet.
Answer
Procedural bias occurs when the unfair amount of pressure is applied to complete their response quickly.
Measurement bias occurs when there is systematic or random error occur while taking the reading.
Design bias occur when the research fails to encounter all the aspects of the projects before presenting conclusion.
1) The correct answer is option B.
Balance is miscalibrated hence there will be systematic error which is a type of measurement bias.
2) The correct answer is option A.
Limiting response time for participant is an example of Procedural bias.
3) The correct answer is option A
Here, Jackie has not surveyed the diverse group so it is the case of design bias
Answer:
F = (913.14 , 274.87 )
|F| = 953.61 direction 16.71°
Explanation:
To calculate the resultant force you take into account both x and y component of the implied forces:

Thus, the net force over the body is:

Next, you calculate the magnitude of the force:

and the direction is:

the mass number minus the atomic number
Answer:
Interference
Explanation:
When two traveling waves traveling waves along the same path are superimposed(combine). The superimposition of these two waves results in the production of a resultant wave which is defined by the net effect of the two waves. Wave interference occurs most types of waves including radio wave, light, acoustic waves and other wave types. Alternating sound between loud and Zero is heard as the two speakers emit identical pure tones because the resultant amplitude after the interference of the two sound waves is the vector sum of each of their amplitudes. A loud sound is heard, when the crest of both waves meets each other and a zero is heard if the crest of one meets the trough of the other as they cancel out.