C and D are units of length or distance.
A is a measured angle.
B is a unit of angular measurement.
Answer:
4 km/hr
Explanation:
The computation of the actual velocity is shown below:
Because the path of its paddles is opposed to the current direction, the real velocity can be determined by deducting the current velocity to its velocity while paddling
So, the actual velocity is
= Upstream - downstream
= 19 km/hr - 15 km/hr
= 4 km/hr
As we can see it is in positive, so it is an upstream direction
Answer:
This means that the kinetic energy of second object is 48times that of the first object
Explanation:
Kinetic energy is the energy possessed by a body by virtue of its motion e.g motion of an accelerating car. Mathematically,
Kinetic energy = 1/2mv² where;
m is the mass of the object
v is the velocity of the object
If Object 1 of mass m moves with speed v in the positive direction, its kinetic energy will be expressed as;
K1 = 1/2mv²
For Object 2 of mass 3m moving with speed 4v in the negative x-direction, its kinetic energy can be expressed as;
K2 = 1/2(3m)(4v)²
K2 = 1/2(3m)(16v²)
K2 = (3m)(8v²)
K2 = 24mv²
To compare the kinetic energy of both bodies, we will take the ratio of K2:K1 to have;
K2/K1 = 24mv²/(1/2)mv²
K2/K1 = 24/(1/2)
K2/K1 = 48
K2 = 48K1
This means that the kinetic energy of second object is 48times that of the first object and moving in the negative x direction since the body of mass 3m initially moves in the negative x direction.
The solution for this problem is through this formula:Ø = w1 t + 1/2 ã t^2
where:Ø - angular displacement w1 - initial angular velocity t - time ã - angular acceleration
128 = w1 x 4 + ½ x 4.5 x 5^2 128 = 4w1 + 56.254w1 = -128 + 56.25 4w1 = 71.75w1 = 71.75/4
w1 = 17.94 or 18 rad s^-1
w1 = wo + ãt
w1 - final angular velocity
wo - initial angular velocity
18 = 0 + 4.5t t = 4 s
A = delta v over delta t delta v is calculated with final velocity less initial velocity then delta v is equals to 20 - 0 that is 20m/s and to calculate delta t is like delta v is final time less initial time as initial time always is 0 the delta t is equals to 10s then a = 20/10 then acceleration is 10m/s^2 (remember that is squared)