Molar mass of FE2O3=2(55.85)+3(16)=159.7
2.56g*1mol/159.7*2mol/1mol*55.85g/1mol=1.79g
C. quadruples the rate
<h3>Further explanation</h3>
Given
The rate law :
R=k[A]²
Required
The rate
Solution
There are several factors that influence reaction kinetics :
- 1. Concentration
- 2. Surface area
- 3. Temperature
- 4. Catalyst
- 5. Pressure
- 6. Stirring
The rate is proportional to the concentration.
If the concentration increased, the reaction rate will increase
The reaction is second-order overall(The exponent is 2)
The concentration of A is doubled, the reaction rate will increase :
r = k[A]² ⇒ r= k[2A]²⇒r=4k[A]²
<em>The reaction rate will quadruple.</em>
It is natural and u can't by it
Answer:
Last week, it was announced that four new elements would be added to the periodic table, a collaboration from researchers in Russia, Japan and the U.S. Elements 113, 115, 117, and 118, which will complete the seventh row, are superheavy elements, that have an atomic number greater than 104.
Explanation:
Answer:
lattice parameter = 5.3355x10^-8 cm
atomic radius = 2.3103x10^-8 cm
Explanation:
known data:
p=0.855 g/cm^3
atomic mass = 39.09 g/mol
atoms/cell = 2 atoms
Avogadro number = 6.02x10^23 atom/mol
a) the lattice parameter:
Since potassium has a cubic structure, its volume is equal to:
v = [(atoms/cell)x(atomic mass)/(p)x(Avogadro number)]
substituting values:
v =[(2)x(39.09)/(0.855x6.02x10^23)]=1.5189x10^-22 cm^3
but as the cell volume is
a^3 =v
cm
for a BCC structure, the atomic radius is equal to
