Answer:
positive
positive
Explanation:
Entropy -
In a system, the randomness is measured by the term entropy .
Randomness basically refers as a form of energy that can not be used for any work.
The change in entropy is given by amount heat per change in temperature.
- When solid is converted to gas entropy increases,
As the molecules in solid state are tightly packed and has more force of attraction between the molecules, but as it is converted to gas, the force of attraction between the molecule decreases and hence entropy increases.
So,
The particles of the substance , if are tightly held by strong force of attraction will decrease the entropy ,
And
If the particles are loosely held , the entropy will increase , i.e. , positive entropy .
Similar with solid converting to liquid , the entropy will increases , i.e. , positive entropy .
Hence ,
The correct sign of entropy for both the process is positive .
Explanation:
The given data is as follows.
P = 3 atm
=
= 
= 9 L =
(as 1 L = 0.001
),
= 15 L = 
Heat energy = 800 J
As relation between work, pressure and change in volume is as follows.
W = 
or, W = 
Therefore, putting the given values into the above formula as follows.
W = 
= 
= 1823.85 Nm
or, = 1823.85 J
As internal energy of the gas
is as follows.
= Q - W
= 800 J - 1823.85 J
= -1023.85 J
Thus, we can conclude that the internal energy change of the given gas is -1023.85 J.
First, find the number of moles of UF6
Avagadro's number = 6.023 x 10^23
Number of moles = 8.0 x 10^26 / Avagadro's number = 8.0 x 10^26 / 6.023 x 10^23 = 1.328 x 10³ moles
Molecular weight of UF6 = Molecular weight of U (238.02891) + Molecular weight of F6 (6 x 18.9984032) = 238.02891 + 113.9904192 = 352.0193292 g/mol
Therefore mass of 8.0 x 10^26 UF6 molecules = 352.0193292 g/mol x 1.328 x 10³ moles = 467.481669 x 10³ grams
Answer:
The answer is C) The temperature at which the solid-state turns into liquid
Explanation:
The melting point of a substance is the temperature at which it shifts state from solid to liquid. At the melting point, the solid and liquid levels exist in equilibrium. As heat is applied to a solid, its temperature will increase until the melting point is reached. More heat then will convert the solid into a liquid with no temperature change. This occurs when the internal energy of the solid increases, commonly by the application of heat or pressure, which increases the substance's temperature to the melting point.